
Advanced Design System 2002

RFIC Dynamic Link Library Guide

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.

Acknowledgments

Cadence® and Analog Artist® are registered trademarks of Cadence Design Systems
Incorporated.
Design Framework II™ and Composer™ are trademarks of Cadence Design Systems
Incorporated.
Copyright © 2001 Cadence Design Systems Incorporated. All rights reserved.
ii

Contents
1 Introduction

Using Examples.. 1-2
Intended Audience.. 1-2

2 Getting ADS Device Parameter Information
Listing Available Devices .. 2-1
Getting Device Parameters... 2-2

Viewing Device Output ... 2-2

3 Creating the Netlist Interface
Creating the ads Symbol View for a Component.. 3-1
Modifying the Component Description Format ... 3-4

Getting Existing CDF Information for a Component ... 3-5
Editing the CDF File ... 3-5
Using the CDF Editor ... 3-6
Loading the Modified CDF File ... 3-17

Modifying the Component Netlisting Function(s).. 3-17

4 Creating Model Files
Creating a Simple ADS Model File ... 4-1
Creating a Parametric Subnetwork Model File ... 4-2
Defining Instance Parameters using Expressions .. 4-2
Defining Model Parameters using Expressions .. 4-3

A References

B Adding CDF/SimInfo to a Component Library
Using cdfDumpAll ... B-1

Dumping the CDF for an Entire Component Library... B-1
Dumping the CDF for Individual Components .. B-1

Using the Edit Component CDF Form.. B-2

C Modifying the basic Library

D Modifying the analogLib Library
Using almBuildLibrary in a UNIX Shell Script ... D-3
iii

E ADS Simulator Input Syntax
Operating System Requirements ... E-1
Setting Environment Variables.. E-1

Platform-Specific Variables... E-2
Using the hpeesofsim Command ... E-3
Codewording and Security ... E-3
General Syntax... E-3
The ADS Simulator Syntax... E-3

Field Separators ... E-4
Continuation Characters... E-4
Name Fields ... E-4
Parameter Fields .. E-4
Node Names .. E-5
Lower/Upper Case.. E-5
Units and Scale Factors ... E-5
Booleans .. E-8
Ground Nodes .. E-8
Global Nodes.. E-8
Comments .. E-9
Statement Order... E-9
Naming Conventions .. E-9
Currents.. E-10

Instance Statements... E-10
Model Statements... E-11
Subcircuit Definitions .. E-12
Expression Capability ... E-13

Constants ... E-14
Variables... E-15
Expressions.. E-17
Functions.. E-17
Conditional Expressions... E-32

VarEqn Data Types... E-34
Type conversion.. E-34

‘‘C-Preprocessor’’.. E-35
File Inclusion .. E-35
Library Inclusion ... E-35
Macro Definitions.. E-36
Conditional Inclusion .. E-36

Data Access Component.. E-37
Reserved Words... E-39

Index
iv

Chapter 1: Introduction
The RFIC Dynamic Link for Cadence enables you to simulate your Cadence designs
in the Advanced Design System (ADS) environment. Designs entered in the Cadence
Schematic and stored in the Cadence design database are represented on the ADS
schematic via its symbol view. The circuits can be simulated together with arbitrary
combinations of ADS system and circuit components using all the circuit simulators
available in ADS.

The RFIC Dynamic Link requires an extension of the process library to support the
netlister and also requires the development of model files in ADS format. This
additional information is used to generate netlists in ADS format as shown in
Figure 1-1.

Figure 1-1. Simulation Data Flow with the RFIC Dynamic Link

Note If you are planning to use components from the basic and analogLib libraries
in your designs, refer to Appendix C, Modifying the basic Library and Appendix D,
Modifying the analogLib Library for additional information.

This document provides information on how to make these additions, articulated into
the following two categories:

• Creating the Netlist Interface: This task consists of modifying the Cadence
library database by adding ADS simulation information to the Component

ADS
SimulatorNetlister

ADS
Model
Files

Cadence
CDF
1-1

Introduction
Description Format (CDF) and creating an ADS Cellview for each library
component.

• Creating Model Files: This is done by creating ASCII text files, formatted for
ADS, that contain model parameters for each of the components.

Using Examples
Each of the above tasks is described with examples. The Dynamic Link includes a
modified version of the analogLib library installed under
$HPEESOF_DIR/idf/cdslib/4.4.* which is used in the examples. If you do not have
write access to this directory or do not want to overwrite it, make a copy of the
directory first as follows:

cd $HPEESOF_DIR/idf/cdslib/4.4.*
find analogLib -depth -print | cpio -pd <mydir>

If you make a copy of the library (recommended), ensure that you edit your cds.lib file
to point to your own copy of analogLib instead of to the original installed version.

Intended Audience
The information contained in this manual applies to EDA engineers and managers
responsible for creating and maintaining process libraries who:

• would like to implement a design flow based on the integration of ADS and
Cadence DFII using the RFIC Dynamic Link.

• have an existing Cadence component library which supports at least one
commercially available SPICE simulator.

• are familiar with the Cadence library structure and Component Description
Format (CDF).

If you are familiar with the topics above, you can successfully complete the library
modification using the information contained in this manual.

The following rules apply to this guide

• Wherever a shell variable is set, the Korn shell syntax is presented.

• Unless otherwise mentioned, assume case sensitivity.
1-2 Using Examples

• If you don’t understand a particular term or acronym, refer to the Glossary in
the RFIC Dynamic Link User’s Guide.

• For information on the ADS Cadence Menu and the Cadence AtrtistUtilities
menu, refer to the “Command Reference” in Appendix A of the RFIC Dynamic
Link User’s Guide.
Intended Audience 1-3

Introduction
1-4 Intended Audience

Chapter 2: Getting ADS Device Parameter
Information
This chapter describes how to obtain parameter information for devices supported by
Advanced Design System (ADS). The parameter information is needed to complete
the tasks outlined in subsequent chapters.

The ADS Simulator provides helpful information on netlist and model formatting via
a terminal window. To use the ADS Simulator for this purpose, ensure that your
environment has been configured for use with Dynamic Link. For more information
on setting up your environment, refer to “Administrative Tasks” in chapter 2 of the
“RFIC Dynamic Link User’s Guide”.

Listing Available Devices
This section describes how to use the hpeesofsim command to list available devices.
The hpeesofsim command uses shared libraries that are set in the
$HPEESOF_DIR/bin/bootscript.sh script. Before attempting to use the hpeesofsim
command, you should source the bootscript.sh file using one of the following
commands:

Note The above commands are only necessary if SHLIB_PATH for HP-UX,
LD_LIBRARY_PATH for SunOS, or LIBPATH for AIX does not include the shared
libraries required to run hpeesofsim.

In a terminal window, enter:

hpeesofsim -help

A list of Available devices and analyses are displayed.

. $HPEESOF_DIR/bin/bootscript.sh (If using the Korn shell)

sh; . $HPEESOF_DIR/bin/bootscript.sh (If using the C shell)
Listing Available Devices 2-1

Getting ADS Device Parameter Information
Getting Device Parameters
This section describes how to use the hpeesofsim command to obtain parameter
information for a specified device. From a terminal window, enter:

hpeesofsim -help <device_name>

where <device_name> is derived using the procedure described in “Listing Available
Devices” on page 2-1.

Note All device names are case sensitive. Use the hpeesofsim -help command to
verify the correct case and spelling.

Viewing Device Output

The output of the ADS Simulator help for a specific device is a generated list of
instance and model information. The output can be divided into four parts; the
Instance Statement, the List of Instance Parameters, the Model Statement and the
List of Model Parameters.

The examples below show the simulator output for a Bipolar Junction Transistor
(BJT). To view the entire list of device parameters in a terminal window, enter:

hpeesofsim -help BJT

1. Instance Statement - The first section of the output produces the netlist
instance statement format for the device.

Netlist instance statement format:

ModelName [:Name] collector base emitter ... <parameter=value> ... ; (device)

For more information, refer to “Instance Statements” on page E-10 in Appendix
E.

2. List of Instance Parameters - The second section contains the list of instance
parameters that can be netlisted in the instance statement.

List of available instance parameters:

Parameters:
 Area smorr Junction area factor.
 Region s---i DC operating region, 0=off, 1=on, 2=rev, 3=sat.
 Temp (C) smorr Device operating temperature.
2-2 Getting Device Parameters

 Gbe (Siemens) ---rr Small Signal Base Emitter Conductance.
 Cbe (F) ---rr Small Signal Base Emitter Capacitance.
 Gb (Siemens) ---rr Small Signal External Base Conductance.
 Cbc (F) ---rr Small Signal Internal Base Collector Capacitance.
 Cbcx (F) ---rr Small Signal External Base Collector Capacitance.
 Ccs (F) ---rr Small Signal Collector to Substrate Capacitance.
 dQbe_dVbc (F) ---rr Small Signal Vbc To Qbe Transcapacitance.
 dIce_dVbe (Siemens) ---rr Small Signal Forward Transconductance gm.
 dIce_dVbc (Siemens) ---rr Small Signal Reverse Transconductance gmr.
 dIbe_dVbc (Siemens) ---rr Small Signal Reverse Transconductance gmr.
 dIbx_dVbe (Siemens) ---rr External Base Transconductance dIbx_dVbe.
 dIbx_dVbc (Siemens) ---rr External Base Transconductance dIbx_dVbc.
 NPN s---b NPN bipolar transistor.
 PNP s---b PNP bipolar transistor.
 Mode s---i Nonlinear spectral model on/off.
 Noise s---b Noise generation on/off.

Example of an instance statement containing some instance parameters:

NPN:Q1 c b e s Area=10 Region=1

3. Model Statement - The third section contains the device model statement
format:

model ModelName BJT <parameter=value> ...

For more information, refer to “Model Statements” on page E-11 in Appendix E.

4. List of Model Parameters - The last section contains the model parameter
information used to build the ASCII model file.

Note The use of ellipse (…) in the following output format indicates that some
of the information has not been shown for conciseness.

List of available model parameters:

model Parameters:
 NPN s---b NPN bipolar transistor.
 PNP s---b PNP bipolar transistor.
 Is (A) smorr Saturation current.
 Js (A) smorr Saturation current.
 Bf smorr Forward beta.
 Nf smorr Forward emission coefficient.
 Vaf (V) smorr Forward Early voltage.
 Vbf (V) smorr Forward Early voltage.
 ...
 wBvbe (V) s--rr Base-emitter reverse breakdown voltage (warning).
Getting Device Parameters 2-3

Getting ADS Device Parameter Information
wBvbc (V) s--rr Base-collector reverse breakdown voltage (warning).
 wVbcfwd (V) s--rr Base-collector forward bias (warning).
 wIbmax (A) s--rr Maximum base current (warning).
 wIcmax (A) s--rr Maximum collector current (warning).
 wPmax (W) s--rr Maximum power dissipation (warning).
 Approxqb s---b use the approximation for Qb vs Early voltage.
 Lateral s---b Lateral substrate geometry.
 Null s---- Has no effect.

Example of Model Statement containing some model parameters (note the use of
the backslash (\) character):

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \
 Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \
 Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \
 Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \
 Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \
 Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test(AAA) Itf=0.32 Ptf=32 \
 Tr=1E-09 Fc=0.6

In the previous definition, the parameter attributes have the following
interpretation:

For more information on parameter attributes, refer to Table 2-1.

field 1: settable

s = settable
S = settable and required

field 2: modifiable

m = modifiable

field 3: optimizable

o = optimizable

field 4: readable

r = readable

field 5: type

b = boolean
i = integer
r = real number
c = complex number
d = device instance
s = character string
2-4 Getting Device Parameters

Table 2-1. Model Parameter Attribute Definitions

Attribute Meaning Example

settable Can be defined in the instance or
model statement. Most parameters
are settable, there are a few cases
where a parameter is calculated
internally and could be used either in
an equation or sent to the dataset via
the OutVar parameter on the
simulation component. The
parameter must have its full address.

Gbe (Small signal Base-Emitter
Conductance) in the BJT model can
be sent to the dataset by setting
OutVar=”MySubCkt.X1.Gbe” on
the simulation component.

required Has no default value; must be set to
some value, otherwise the simulator
will return an error.

modifiable The parameter value can be swept in
simulation.

optimizable The parameter value can be
optimized.

readable Can be queried for value in simulation
using the OutVar parameter. See
settable.

boolean Valid values are 1, 0, True, and False.

integer The maximum value allowed for an
integer type is 32767, values between
32767 and 2147483646 are still valid,
but will be netlisted as real numbers.
In some cases the value of a
parameter is restricted to a certain
number of legal values.

The Region parameter in the BJT
model is defined as integer but the
only valid values are 0, 1, 2, and 3.

real number The maximum value allowed is
1.79769313486231e308+.

complex number The maximum value allowed for the
real and imaginary parts is
1.79769313486231e308+.
Getting Device Parameters 2-5

Getting ADS Device Parameter Information
device instance The parameter value must be set to
the name of one of the instances
present in the circuit.

The mutual inductance component
(Mutual), where the parameters
Inductor1 and Inductor2 are defined
by instance names of inductors
present in the circuit or by a variable
pointing to the instance names.
Inductor1=”L1” or Inductor1=Xyz
where Xyz=”L1”

character string Used typically for file names. Must be
in double quotes.

Filename=”MyFileName”

Table 2-1. Model Parameter Attribute Definitions

Attribute Meaning Example
2-6 Getting Device Parameters

Chapter 3: Creating the Netlist Interface
This chapter describes how to modify the Cadence library database. This includes
creating a new ads symbol view for each library component as well as adding an ADS
simulation information section to the Component Description Format (CDF). This
procedure can be divided into the following tasks:

• Creating the ads Symbol View for a component

• Modifying the CDF for a component

• Getting existing CDF information for a component

• Editing the CDF File contents

• Loading the modified CDF file

• Modifying the component netlisting function(s)

Note While the procedure for modifying the analogLib npn component is described,
this same procedure can be applied to most any library component.

Creating the ads Symbol View for a Component
Each primitive component requires an ads symbol view (or stop view) so that the
netlister knows where in the design hierarchy stops expanding the netlist. The ads
symbol view also functions as an instance parameter template.

To create the ads view:

1. From the Cadence CIW, choose File > Open to open an existing symbol view (for
example, the cdsSpice view) of a cell such as the analogLib npn cell.
Creating the ads Symbol View for a Component 3-1

Creating the Netlist Interface
2. Choose Design > Save As. The Save As dialog box appears.

3. In the Save As dialog box, change the View Name field to ads and click OK. This
creates the ads view in the analogLib database for the npn cell.

Alternatively, you can use the following procedure:
3-2 Creating the ads Symbol View for a Component

1. In the Cadence CIW, choose Tools > Library Manager . The Library Manager form
appears.

2. In the Library Manager form, choose Edit > Copy. The Copy View form appears.
Creating the ads Symbol View for a Component 3-3

Creating the Netlist Interface
3. In the To section of the Copy View dialog box, enter ads in the View field. Ensure
that all other pertinent information is correct, then click OK.

Modifying the Component Description Format
To modify the Component Description Format (CDF) information for a particular
library component, you need the following information:

• A list of ADS instance parameters for the component. For more information,
refer to “Getting Device Parameters” on page 2-2.

• The existing CDF information for the component
3-4 Modifying the Component Description Format

Getting Existing CDF Information for a Component

Although there’s more than one way to obtain the CDF for a component, the most
reliable way is to output the existing component CDF to a text file using the SKILL
command, cdfDump, in the Cadence CIW window. For example:

cdfDump(“analogLib” “/tmp/npn.cdf” ?cellName “npn”)

Editing the CDF File

Edit the CDF information (see Cadence Component Description Format User’s Guide)
text file to make modifications (see description of the CDF files contents below).
Example:

vi /tmp/npn.cdf

The CDF file consists of two main parts. The first part defines the generic parameters
used, for example, width and length. These parameter definitions are shared by all
the supported simulators under Analog Artist. The second part, known as the
simulation information (simInfo) section, details how some subset of these
parameters apply to each different simulator. This section determines how each
component instance is netlisted and how its model arguments and model parameter
values are output in the netlist. The simInfo sub-section of primary interest here is
the ads siminfo sub-section, which needs to be created in order for the component to
be supported by RFIC Dynamic Link.

Example CDF File

The actual CDF file may resemble the following. For conciseness only a few of the
CDF parameter definitions and siminfo sub-sections have been shown here and this
file was obtained as outlined in the previous step. The ads Simulation Information
sub-section is shown highlighted.

/**/
 LIBRARY = "analogLib"
 CELL = "npn"
/**/

let((libId cellId cdfId)
 unless(cellId = ddGetObj(LIBRARY CELL)
 error("Could not get cell %s." CELL)
)
 when(cdfId = cdfGetBaseCellCDF(cellId)
 cdfDeleteCDF(cdfId)
Modifying the Component Description Format 3-5

Creating the Netlist Interface
)
 cdfId = cdfCreateBaseCellCDF(cellId)

 ;;; Parameters
 cdfCreateParam(cdfId
 ?name "model"
 ?prompt "Model name"
 ?defValue ""
 ?type "string"
 ?display "artParameterInToolDisplay(’model)"
 ?parseAsCEL "yes"
...
;;; Simulator Information
 cdfId->simInfo = list(nil)
 cdfId->simInfo->ads = ’(nil
 termMapping nil
 netlistProcedure IdfDevPrim
 instParameters (Area Region Temp Mode Noise)
 otherParameters (model bn)
 propMapping (nil Area area Region region)
 typeMapping (nil model model)
 componentName (expr iPar(’model))
 termOrder (C B E progn(bn))
 current port
 namePrefix "Q"
)

 ...

Using the CDF Editor

An alternative method for editing the component CDF is by using the CDF editor.
From the CIW, choose Tools > CDF > Edit. A dialog box enabling you to create or
modify a cell’s CDF information appears.
3-6 Modifying the Component Description Format

In the dialog box, add or modify the desired information. Ensure the CDF Type is set
to Base .

Note To save CDF Edit dialog box changes, you must edit the base-level CDF and
have write permission to the library.

In the Simulation Information section of the Edit Component CDF dialog box, click
Edit to view the simInfo.

An Edit Simulation Information dialog box appears.
Modifying the Component Description Format 3-7

Creating the Netlist Interface
Note While the CDF Edit Simulation Information form may be used to edit the
CDF, it is more useful to verify what is in the CDF database. Using cdfDump() and a
text editor is more reliable for editing the CDF.

Adding CDF Simulation Information for ADS

A detailed explanation of the CDF information fields is provided in the references.
However, in addition, the following applies to RFIC Dynamic Link/ADS:

• netlistProcedure: Use the built-in netlisting functions IdfDevPrim for
devices requiring models (e.g., npn, nmos), IdfCompPrim for devices for which a
model is not required or is optional (e.g., cap, res) and IdfSubcktCall for
subcircuits.

• otherParameters: These are special parameters that apply to the
component instance but are NOT netlisted as instance parameters (e.g., model,
bn). These parameters appear in the Edit Object Properties Form and the CDF
3-8 Modifying the Component Description Format

Edit Form and are output to the netlist only if they have a value. If the value of
any of these parameters is required to be netlisted (e.g., model value for a
transistor) it should be given a value or default value (defValue field) in the
CDF parameter definition section, otherwise the ADS simulator reports an
error.

• instParameters: This is a list of all parameters that are netlisted as instance
parameters of this component, in the form name=value, such as L, W. These
parameters appear in the Edit Object Properties Form and the CDF Edit Form
and are output to the netlist only if they have a value. If the value of any of
these parameters is required to be netlisted (for example, R value for a resistor)
it should be given a value or default value (defValue field) in the CDF
parameter definition section, otherwise the ADS simulator reports an error.

• modelArguments: ADS does not support passing arguments directly to the
model using this field. To pass parameters to a model it is necessary to
implement the model as a subnetwork, include a model card in the subnetwork
and pass parameters to the subnetwork using the instParameters field. So
always leave out this field or set it to nil.

• macroArguments: This field is needed to pass parameters to subnetwork
instances. For primitive devices leave this field blank or set it to nil.

• componentName: The content of this field is netlisted as the component
name of the instance. For devices using models the component name is the
name of the model. The componentName field may be set to an Analog
Expression Language (AEL) expression, e.g., expr(iPar(‘model)) for an npn. The
file naming convention is <model>.<suffix> and can be any name you choose
(e.g. npn1.ads). In the Model name field of the Edit Object Properties form,
enter the model name. The RFIC Dynamic Link configuration file defined by
IDF_CONFIG_FILE (default idf.cfg) specifies the suffix and also the search
path (4.4.3 only) for the model file(s). For Cadence versions 4.4.5 and 4.4.6, the
Netlist File Include component is used to locate model files. This enables the
netlister to determine which model file to include in the netlist when it outputs
a given instance.

• termOrder: This field specifies the order in which the terminals are
netlisted. This information is obtained for each ADS component by entering:

hpeesofsim –help <device_name>

• termMapping: This field defines the mapping between the pins/terminals in
the schematic/symbol and the currents in the DC PSF file (see Figure 3-1). This
Modifying the Component Description Format 3-9

Creating the Netlist Interface
mapping is used to back annotate DC simulation results for currents to the
schematic. Node voltages are annotated based on the node name, not the pin
name, so this field has no effect on voltage annotation.

Figure 3-1. Sample of DC PSF File

The ADS simulator itself does not keep track of the pin names for devices. ADS
only tracks what the pin ordering for a device was. The mapping itself must be
constructed by looking at the termOrder field. Whatever pin is first in the
termOrder field will then be pin 1 for the ADS simulator, the second terminal is
pin 2, and so on. Figure 3-2 shows the simInfo for the analogLib npn
component. The terminal order is listed as C B E S. This means that the first
terminal is C. It needs to be mapped to terminal 1 for the ADS simulator
results. In keeping with ADS convention, terminal 1 is listed as P1. The colon
character is a delimiter character, and must be placed in the mapping. The
proper mapping for C is thus :P1. When current annotations are done and the
instances C pin is encountered, it will then look for a current source named P1.
If the instance was in subcircuit I1, and is named I0, when pin C is
encountered, the PSF file will be checked for I1.I0:P1. Looking at the PSF in
Figure 3-1, we can see this would result in the value -0.000018 being annotated
to the schematic. Continuing through the list, B is the second terminal, and is
mapped to :P2, E is the third terminal and is mapped to :P3, and S is the fourth
terminal and mapped to :P4.

"I1.net8" "node" 1.450000
"gnd!" "node" 0.000000
"I1.I0:P1" "source" -0.000018
"I1.I0:P2" "source" 0.000385
"I1.I0:P3" "source" -0.000367
3-10 Modifying the Component Description Format

Figure 3-2. ADS simInfo for npn device with termMapping field set

For Bi-directional elements, it turns out that the ADS simulator will only
output a single current value. A case in point is the ADS R element (an ideal
resistor). In order to annotate both pins, it becomes necessary to specify that
one pin is the negative of the other pin (in other words, current enters through
one pin (+), and leaves through the other pin (-)). This mapping can be achieved
by placing a key word of minus. in front of the mapped pin name. Figure 3-3
displays the analogLib res simInfo, where bi-directional mapping has been
done. The termOrder field is PLUS MINUS. PLUS has been mapped to :P1, as
would be expected. However, MINUS has been mapped to :minus.P1. This
specifies to the annotation code that, when MINUS is encountered, the current
for the positive terminal should be retrieved, and it’s value should be multiplied
by -1.

cdfId->simInfo->ads = ‘ (nil
 netlistProcedure IdfDevPrim
 otherParameters (model)
 instParameters (Area Region Temp Mode Noise)
 componentName (expr iPar(‘ model))
 termOrder (C B E S)
 termMapping (nil C ":P1" B ":P2" E ":P3" S ":P4")
 propMapping (nil Area area Region region)
 namePrefix " "
 typeMapping nil
 uselib nil
)

Modifying the Component Description Format 3-11

Creating the Netlist Interface
Figure 3-3. ADS simInfo for res device showing the minus keyword in termMapping

The termMapping field does not need to be set for hierarchical devices.
Hierarchical circuits will descend into the hierarchy and retrieve the currents
of all devices attached to a port, and add them together. This does make it
critical that the minus key word be used properly on bi-directional devices. If
minus is not used, when the currents are added up at a port, the value that is
annotated will not be correct. Regrettably, even if a termMapping is set up for a
hierarchical device, and an entry exists in the PSF file, it will still not be used,
the internal Cadence code will always descend into the hierarchy and add up
the values.

Note Voltages and Currents will only be annotated on pins that have an
associated cdsTerm. This is true for primitive devices as well as for hierarchical
subcircuits.

• propMapping: This allows parameter definitions to be reused or shared even
though they have different names (for use by different simulators) and acts as
an aliasing mechanism. For instance, the parameter named Area used by ADS
is mapped to area which most other simulators use. In fields like
instParameters and otherParameters, the simulator-specific name (e.g., Area)
should be used.

• namePrefix: Used as a prefix for instance names.

cdfId->simInfo->ads = ‘ (nil
 netlistProcedure IdfCompPrim
 otherParameters (wPmax wImax Model)
 instParameters (R Temp Tnom TC1 TC2 Width Length Noise)
 componentName R
 termOrder (PLUS MINUS)
 termMapping (nil PLUS ":P1" MINUS ":minus.P1")

propMapping (ni l R r Tnom tnom TC1 tc1 TC2 tc2 Width w \
Length l Model model Noise isnoisy)
 namePrefix " "
 typeMapping nil
 uselib nil
)

3-12 Modifying the Component Description Format

• typeMapping: This field is used to call a built-in SKILL function to netlist
certain types of parameters, whenever they are given a value. e.g.,mapping a
property to type substrate for microwave library components will cause the
IdfPrintSubstrate() function to be called whenever Subst has a value:

propMapping(nil Subst subName)
typeMapping(nil Subst substrate)

To get a list of all such mappings, type the following in the CIW:

asiGetNetlistOption(asiGetTool(’ads) ’propTypeMapping))

The npn has been instantiated as shown in the figure below with the connecting
wires named according to the device terminals.
Modifying the Component Description Format 3-13

Creating the Netlist Interface
Figure 3-4. Instance of npn Component

The object parameters for this instance have been set as follows:
3-14 Modifying the Component Description Format

The instance statement on the ADS netlist corresponding to this instance will appear
as follows:

...
npnmod:Q0 coll base emit 0 Area=2.0 Region=1 Temp=25.0
...

The following model file will also be appended to the netlist:

...
model npnmod BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 \
Ikf=0.8 Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \
Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \
Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \
Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \
Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test(AAA) Itf=0.32 Ptf=32 \
Tr=1E-09 Fc=0.6
...
Modifying the Component Description Format 3-15

Creating the Netlist Interface
The instance statement on the ADS netlist corresponding to this instance contains
the following parameters:

• npnmod The netlister evaluates the expression contained in the
componentName CDF field and in this case picks up the value of the model
name property (expr ipar(‘model)). The netlister also appends the content of
the npnmod.ads file.

• Q0 The instance name is generated by using the contents of the namePrefix
CDF field and appending an incremental number (i.e. Q0, Q1, Q2,...).

• coll base emit 0 The first three entries are taken from the names of the nodes
to which the device is attached (see Figure 3-4). In this case, the names have
been explicitly assigned but the same applies to system generated node names.
The termOrder field in the CDF controls the order in which the terminals are
netlisted.

Note The progn SKILL function is no longer supported by RFIC Dynamic Link
in Cadence version 4.4.5 and above.

• Area=2.0 Region=1 Temp=25.0 The parameters Area, Region and Temp are
listed in the instParameters field of the component CDF, therefore they are
netlisted as instance properties if their value has been set on the instance. If
the field is left blank, the parameter is not netlisted and the simulator uses the
default value.

• model npnmod … The netlister appends the contents of the file <Model
name>.ads (if the IDF_MODEL_SUFFIX variable is set to the default value),
which in this case is the model file for npnmod.

Additional Notes for Simulation Information Fields

• All simInfo parameters that apply to the Microwave and hpmns Cadence
Analog Artist interfaces also apply to the ads simulator view. An example of
such a parameter is typeMapping.

• When errors in the CDF file are loaded with load <file>, command errors may
not be reported. If this occurs, the corresponding ads simulation view for the
device is not created.
3-16 Modifying the Component Description Format

Loading the Modified CDF File

After modifying the CDF text file to support ADS, load the edited file from the CIW
using the SKILL command, load. For example:

load “/tmp/npn.cdf”

This automatically updates the Cadence library database and saves the new CDF
information in the database, provided you have write permissions.

Modifying the Component Netlisting Function(s)
Each simulator can use its own netlist function to write out a component instance in
its own netlist format. Two built-in component-netlisting procedures are available in
the RFIC Dynamic Link SKILL context:

• IdfDevPrim is used for components that always need a model (a transistor, for
example)

• IdfCompPrim is used for components that may or may not need models (a
resistor, for example)

You probably won’t need to modify or replace these functions. But if you do, the
SKILL code for these built-in functions is provided in:

$HPEESOF_DIR/idf/skill/netlistFuncs.il
Modifying the Component Netlisting Function(s) 3-17

Creating the Netlist Interface
3-18 Modifying the Component Netlisting Function(s)

Chapter 4: Creating Model Files
This chapter describes how to create ASCII-text process-dependent model files,
formatted for ADS. These files are stored separate from the Cadence library
database, in a model library directory. The netlister will simply append the model file
to the final top-level ADS netlist without a syntax check. The ADS simulator requires
the syntax of these files to be exact.

To build model files in ADS format, you’ll need the following information:

• The basic built-in ADS component parameter information (refer to “Getting
Device Parameters” on page 2-2).

• The ADS Simulator Input format information (refer to Appendix E, ADS
Simulator Input Syntax).

This chapter describes the following tasks:

• “Creating a Simple ADS Model File” on page 4-1

• “Creating a Parametric Subnetwork Model File” on page 4-2

• “Defining Instance Parameters using Expressions” on page 4-2

• “Defining Model Parameters using Expressions” on page 4-3

• Creating Process Parameter Files

• Linking the ADS Model File to a Library Component

Creating a Simple ADS Model File
Once the model parameters are known, you can create an ADS model file using an
ASCII text editor. In your text editor window, type in the complete model statement
in the appropriate format for the selected device as defined in part 3 of “Viewing
Device Output” on page 2-2. As you build the ADS model file, be aware of the
following:

• The model statement must be on a single line. Use the backslash (\) as a line
continuation character.

• The instance and model parameter names are case sensitive.

• If a parameter is not specified, ADS uses a default parameter value. These
values are documented in volume 1 of the ADS “Circuit Components” manual.
Creating a Simple ADS Model File 4-1

Creating Model Files
Example:

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 \
Ikf=0.8 Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \
Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \
Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \
Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \
Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=1.2 Itf=0.32 Ptf=32 \
Tr=1E-09 Fc=0.6

Creating a Parametric Subnetwork Model File
Device models, especially for active devices, often consist of complex combinations of
primitive components such as resistors, inductors, capacitors, diodes and transistors.
These model files are thus structured as subnetworks, that also allow parameters to
be set on the instance and passed down the hierarchy to the subnetwork.

The syntax supported by the ADS Simulator is described in Appendix E under
“Subcircuit Definitions” on page E-12

Example:

define npn1 (c b e)
parameters Area=1 Region=1 Noise=1
model NPN BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \
Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \
Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \
Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \
Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \
Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=1.2 Itf=0.32 Ptf=32 \
Tr=1E-09 Fc=0.6
NPN:qin c b e 0
end npn1

Defining Instance Parameters using Expressions
Instance parameters must be defined in the Component Parameters section of the
Cadence CDF as described in the Cadence Component Description Format User’s
Guide. RFIC Dynamic Link supports netlisting of instance parameters that contain
Cadence AEL expressions, such as math operators, iPar, pPar etc.
4-2 Creating a Parametric Subnetwork Model File

Defining Model Parameters using Expressions
Model parameters contained in ADS model files can include expressions. The
expressions can be defined by arbitrary combinations of predefined ADS functions,
math operators and Boolean operators. For a list of functions and operators
supported by ADS, refer to Appendix E, ADS Simulator Input Syntax.

For an expression to be correctly evaluated by ADS, both the syntax of the expression
and the value of the variables used in the expression must be defined in one of the
following places:

1. directly in the model file,

2. in a separate file which is included in the top level netlist,

3. in a separate file which is included in the model file, or

4. on the ADS top level schematic in a VarEqn block.

Note These different methods can be used in combination, with expressions defined
in different places, as long as there is a single definition for each expression.

Example:

This model file for a BJT contains a model parameter, Vtf, that is defined as an
expression of the variable AAA.

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \
 Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \
 Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \
 Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \
 Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \
 Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test(AAA) Itf=0.32 Ptf=32 \
 Tr=1E-09 Fc=0.6

In order to simulate this model in ADS, the expression test needs to be defined and a
value must be given to the variable AAA.

Assuming that:

test(x)=x*1.2
AAA=1
Defining Model Parameters using Expressions 4-3

Creating Model Files
Do one of the following:

1. Append the definition of test and AAA to the model file:

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \
...
 Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test(AAA) Itf=0.32 Ptf=32 \
 Tr=1E-09 Fc=0.6
 test(x)=x*1.2
 AAA=1

2. Create a separate ASCII file (for example, function.inc) containing the
definition of test and AAA. Then place a geminiInclude instance on the top level
ADS schematic by typing geminiInclude (case sensitive) in the Component
History field.

The File parameter should contain the full path of the ASCII file. When this
component is netlisted by ADS, it generates a #include statement that is later

Component History

File Parameter
4-4 Defining Model Parameters using Expressions

replaced by the contents of the ASCII file. For more information on file
inclusion, refer to Appendix E, “File Inclusion” on page E-35.

The geminiInclude component can thus be used to append a file containing
multiple models or even the entire set of models. It can also be used to select
among various files containing different sets of process parameters
corresponding to different corner cases.

In a practical example, typical.inc could contain the process parameter values
(sheet resistance, area capacitance, etc.) for the typical case, while
maximum.inc would have definitions corresponding to the maximum case. The
geminiInclude component can then be used to select which corner case to
simulate by pointing to either typical.inc or maximum.inc.

3. Include the ASCII file with the expression definitions directly in the model file.

model npn BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \
...
 Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test(AAA) Itf=0.32 Ptf=32 \
 Tr=1E-09 Fc=0.6
 #include “/users/home/functions.inc”

4. Use a VAR block in the ADS top level schematic that contains the expression
definitions. For more information on the VAR block, refer to the “VAR (Variables
and Equations Component)” in the ADS Circuit Components manual.
Defining Model Parameters using Expressions 4-5

Creating Model Files
Note If an expression is used to define a model parameter, the argument cannot be
another model parameter or an instance parameter. If the model needs to use the
value of an instance parameter in the calculation of a model parameter, this requires
creating a subcircuit that incorporates the model, as in the following example:

define npn1 (c b e)
parameters AAA=1 Area=1 Region=1 Noise=1
model NPN BJT NPN=yes Is=4.598E-16 Bf=175 Nf=0.9904 Vaf=22 Ikf=0.8 \
Ise=1.548E-14 Ne=1.703 Br=76.1 Nr=0.9952 Var=2.1 \
Ikr=0.02059 Isc=3.395E-16 Nc=1.13 Rb=8 Irb=8E-05 \
Rbm=3 Re=0.45 Rc=6 Xtb=0 Eg=1.11 Xti=3 Cje=8.7E-13 \
Vje=0.905 Mje=0.389 Cjc=3.6E-13 Vjc=0.4907 Mjc=0.2198 \
Xcjc=0.43 Tf=1e-11 Xtf=50 Vtf=test(AAA) Itf=0.32 Ptf=32 \
Tr=1E-09 Fc=0.6
NPN:qin c b e 0
end npn1
4-6 Defining Model Parameters using Expressions

Appendix A: References
The following references supplement the information in this book. All the Cadence
manuals are available in Cadence Openbook.

[1]Cadence Component Description Format User’s Guide

[2] Cadence Design Framework II/Library Manager Help

[3] Cadence Analog Artist SKILL Reference

[4] Cadence SKILL Language Reference Manual

[5] Cadence SKILL User Guide

[6] ADS “Expressions, Measurements, and Simulation Data Processing”
A-1

References
A-2

Appendix B: Adding CDF/SimInfo to a
Component Library
The chapter provides information on modifying the Cadence simInfo (Simulation
Information) section in a CDF (Component Description Format) file.

Using cdfDumpAll
The benefit of adding simulator information via cdfDumpAll is that you need not
have numerous files containing specific simulation parameters and simInfo. Instead,
all of the CDF information is compiled for you in a single ASCII file. This method is
probably your best choice if you do not have source files for parameter and simInfo
data for each and every simulator that a library currently supports.

Dumping the CDF for an Entire Component Library

To create and modify an ASCII file containing the entire CDF for an existing
component library:

• Enter the following Skill command in the Cadence CIW:

cdfDumpAll(“libName” “fileName” ?edit t)

• In the text editor of your choice (vi, emacs, etc.), for each library cell add the
simInfo for the new simulator ads to the CDF file. In some cases, you may also
need to add new CDF parameters.

• Load this file in the CIW using the command:

load “fileName”

This modifies the library database accordingly, assuming you have write
permission to the library.

Dumping the CDF for Individual Components

To create and modify an ASCII file containing the CDF for an individual component:

• Enter the following Skill command in the Cadence CIW:

cdfDump(“libName” “fileName” ?cellName “cellName” ?edit t)
B-1

Adding CFD/SimInfo to a Component Library
• In the text editor of your choice (vi, emacs, etc.), for each library cell add the
simInfo for the new simulator ads to the CDF file. In some cases, you may also
need to add new CDF parameters.

• Load this file in the CIW using the command:

load “fileName”

This modifies the library database accordingly, assuming you have write
permission to the library.

Using the Edit Component CDF Form
Adding CDF information via the Edit Component CDF form is the ideal method for
those who are not computer programmers. It is also often the best method to use
when changes to only a few cells are required.

To add new CDF information via the Edit Component CDF form:

• From the CIW, choose Tools > CDF > Edit. A dialog box enabling you to create or
modify a cell’s CDF information appears.
B-2

• In the dialog box, add or modify the desired information.

Note To save changes to the Edit Component CDF form, you must edit the
base-level CDF and have write permission to the library.

For more details on using the Edit Component CDF form, refer to the Cadence
Component Description Format User’s Guide [1].

Note If you are adding a CDF entry for a new simulator, the tool filter file must
reflect this before the entry appears in the dialog box’s simulation information
(simInfo) section. For more information, refer to the Cadence Component Description
Format User Guide.
B-3

Adding CFD/SimInfo to a Component Library
B-4

Appendix C: Modifying the basic Library
RFIC Dynamic Link requires that the basic library nlpglobals cell contains the ads
view. A version of the basic library is located in

$HPEESOF_DIR/idf/cdslib/4.4.*/basic

Alternatively, you may modify your site’s version of the basic library located in:

<Cadence_install_dir>/tools/dfII/etc/cdslib/basic

To do this:

• Using the Cadence Schematic window, edit the spectre view of cell nlpglobals.

• Save this view as the ads view.
C-1

Modifying the basic Library
C-2

Appendix D: Modifying the analogLib Library
The RFIC Dynamic Link install package includes a version of Cadence analogLib
that has been extended to work with ADS and is located in:

$HPEESOF_DIR/idf/cdslib/4.4.*/analogLib

However, if you need to extend your own version of analogLib to work with ADS, this
appendix may be useful.

To modify your version of analogLib:

1. Make a temporary directory called adsLib at the current level then change to
the newly created adsLib directory.

2. Copy your version of analogLib to your current (adsLib) directory. Take care to
use a method, such as UNIX tar, that will preserve the file dates and access
codes.

AnalogLib is usually located in $CDS_INST_DIR/tools/dfII/etc/cdslib/artist/

Alternatively, you can use the UNIX copy command:

cp -r $CDS_INST_DIR/tools/dfII/etc/cdslib/artist/analogLib .

3. Copy the official versions of some or all of the following simulator directories
(usually located under $CDS_INST_DIR/tools/dfII/src/artist/) to your
current directory.

auCdl
auLvs
cdsSpice
hpmns
hspiceS
libra
microwave
spectre
spectreS
spice2

The above directories are listed in alphabetical order. Each should contain
simInfo.il files for the respective simulators.
D-1

Modifying the analogLib Library
Note Instead of copying these directories, you may want to make symbolic
links to them.

4. Copy the official version of the ads simulator directory (located under
$HPEESOF_DIR/idf/cdslib/4.4.*/artist/ads/) to your current directory. Make
your modifications to the appropriate SKILL files in the ads directory.

5. Create a one-line cds.lib file that defines analogLib. The content of the cds.lib
file should contain:

DEFINE analogLib ./analogLib

6. Enter the command:

makeAnalogLib

7. Copy the newly created analogLib to whatever location you desire, such as:

$CDS_INST_DIR/tools/dfII/etc/cdslib/artist/analogLib

You are now able to simulate in ADS using the modified analogLib library.
D-2

Using almBuildLibrary in a UNIX Shell Script
The Analog Artist Skill function almBuildLibrary compiles the simulation
information for various simulators into a given library. For each such library, you will
need to write a UNIX shell script that essentially starts icms in non-graphics mode
and then runs almBuildLibrary.

The following is an example script for analogLib, a variation of which can usually be
found in <Cadence_install_dir>/tools/dfII/src/artist/analogLib/makeAnalogLib:

#!/bin/csh -f

echo Building library...
/bin/rm -f CDS.log
cat << EOF > tmp.il
\i printf(“Loading tmp.il...”)
\i lib = “analogLib”
\i sourcePath = “.”
\i simulators = ‘(ads auCdl auLvs cdsSpice hpmns hspiceS libra spectre \
spectreS spice2 hpmns)
\i ddGetObj(lib)
\i sstatus(writeProtect nil)
\i load(“./ads/params.il”)
\i load(“./ads/labels.il”)
\i (almBuildLibrary ?lib lib ?sourcePath sourcePath ?simulators
simulators)
\i exit()
EOF

icms -replay ./tmp.il -nograph -log ./CDS.log

For this example script to work, there must be:

• a copy of analogLib in the current directory

• a subdirectory for each of the simulators

• and each simulator directory must contain a file called simInfo.il.
D-3

Modifying the analogLib Library
Your directory structure should be similar to the following:

This procedure is documented in more detail in the Cadence Component Description
Format User’s Guide [1].

adsLib/
analogLib
cds.lib
makeAnalogLib
ads/

params.il
labels.il
simInfo.il

spectre/
simInfo.il

...
D-4

Appendix E: ADS Simulator Input Syntax
This chapter provides information related to Advanced Design System’s Simulator.
While this is not an all inclusive document with regards to the ADS simulator, the
information provided in this chapter should help you accomplish tasks related to the
RFIC Dynamic Link.

Operating System Requirements
The ADS 2002 Simulator is supported on the following platforms:

• HP-UX 10.20 or 11

• SunOS 5.6, 5.7 & 5.8 (Solaris 2.6, 7.0 & 8.0)

• AIX 4.4.3 or later

• Windows 98, 2000, and NT 4.0

Setting Environment Variables
Before running the ADS Simulator, the following environment variables must be set:

To set the UNIX environment variables using the Korn Shell, add the following to
your ~/.profile.

export HPEESOF_DIR=<ADS_install_dir>
export PATH=$PATH:$HPEESOF_DIR/bin

To set the UNIX environment variables using the C Shell, add the following to your
~/.cshrc.

setenv HPEESOF_DIR <ADS_install_dir>
setenv PATH $PATH:$HPEESOF_DIR/bin

Table 4-1. ADS Simulator Required Environment Variables

Variable UNIX Setting

HPEESOF_DIR <ADS_install_dir>

PATH $PATH:$HPEESOF_DIR/bin
E-1

ADS Simulator Input Syntax
In addition to HPEESOF_DIR and PATH, you also need to set COMPL_DIR. The
COMPL_DIR variable should have the same value as HPEESOF_DIR. There are
times when COMPL_DIR can be different than HPEESOF_DIR; however, the
majority of users should set COMPL_DIR to be the same as HPEESOF_DIR.

Platform-Specific Variables

A platform-specific variable also needs to be set before running the ADS simulator.

HP-UX:

export SHLIB_PATH="$HPEESOF_DIR/hptolemy/lib.hpux10:$SHLIB_PATH"

export SHLIB_PATH="$HPEESOF_DIR/lib/hpux10:$SHLIB_PATH"

Solaris 5.6:

export LD_LIBRARY_PATH="$HPEESOF_DIR/hptolemy/lib.sun56:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH="$HPEESOF_DIR/lib/sun56:$LD_LIBRARY_PATH"

Solaris 5.7:

export LD_LIBRARY_PATH="$HPEESOF_DIR/hptolemy/lib.sun57:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH="$HPEESOF_DIR/lib/sun57:$LD_LIBRARY_PATH"

Solaris 5.8:

export LD_LIBRARY_PATH="$HPEESOF_DIR/hptolemy/lib.sun57:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH="$HPEESOF_DIR/lib/sun57:$LD_LIBRARY_PATH"

IBM AIX:

export LD_LIBRARY_PATH="$HPEESOF_DIR/hptolemy/lib.aix4:$LD_LIBRARY_PATH"

export LD_LIBRARY_PATH="$HPEESOF_DIR/lib/aix4:$LD_LIBRARY_PATH"

MS Windows:

path %HPEESOF_DIR%/hptolemy/lib.win32;%PATH%

path %HPEESOF_DIR%/lib/win32;%PATH%

Note The platform-specific variable information above is for those using the Korn
Shell or Borne Shell. Use the appropriate equivalent command if using the C Shell.
E-2

Using the hpeesofsim Command
The ADS Simulator can be invoked using the following syntax.

A list of available options can be generated using the following command:

Codewording and Security
The ADS Simulator is a secured program that requires, at a minimum, a license for
the E8881 Linear Simulator to run. Depending on the type of simulation, additional
licenses may be required. For more information on codewording and security, refer to
“Setting Up Licenses on UNIX Systems” in the ADS “Installation on UNIX Systems”
manual.

General Syntax
In this appendix, the following typographical conventions apply:

The ADS Simulator Syntax
The following sections outline the basic language rules.

Usage: hpeesofsim [-r rawfile] [inputfile]

Usage: hpeesofsim -o

Table 4-2. Typographic Conventions

Type Style Used For

[. . .] Data or character fields enclosed in brackets are optional.

italics Names and values in italics must be supplied

bold Words in bold are ADS simulator keywords and are also
required.
E-3

ADS Simulator Input Syntax
Field Separators

A delimiter is one or more blanks or tabs.

Continuation Characters

A statement may be continued on the next line by ending the current line with a
backslash and continuing on the next line.

Name Fields

A name may have any number of letters or digits in it but must not contain any
delimiters or non alphanumeric characters. The name must begin with a letter or an
underscore (_).

Parameter Fields

A parameter field takes the form name = value, where name is a parameter keyword
and value is either a numeric expression, the name of a device instance, the name of a
model or a character string surrounded by double quotes. Some parameters can be

Table 4-3. Fundamental Units

Dimension Fundamental Unit

Frequency Hertz

Resistance Ohms

Conductance Siemens

Capacitance Farads

Inductance Henries

Length meters

Time seconds

Voltage Volts

Current Amperes

Power Watts

Distance meters

Temperature Celsius
E-4

indexed, in which case the name is followed by [i], [i,j], or [i,j,k]. i, j, and k must be
integer constants or variables.

Node Names

A node name may have any number of letters or digits in it but must not contain any
delimiters or non alphanumeric characters. If a node name begins with a digit, then
it must consist only of digits.

Lower/Upper Case

The ADS Simulator is case sensitive.

Units and Scale Factors

An integer or floating point number may be scaled by following it with either an e or
E and an integer exponent (e.g., 2.65e3, 1e-14).

An ADS Simulator parameter with a given dimension assumes its value has the
corresponding units. For example, for a resistance, R=10 is assumed to be 10 Ohms.
The fundamental units for the ADS Simulator are shown in Table 4-3.

A number or expression can be scaled by following it with a scale factor. A scale factor
is a single word that begins with a letter or an underscore. The remaining characters,
if any, consist of letters, digits, and underscores. Note that ‘‘/’’ cannot be used to
represent ‘‘per’’. The value of a scale factor is resolved using the following rule: If the
scale factor exactly matches one of the predefined scale-factors (Table 4-4), then use
the numerical equivalent; otherwise, if the first character of the scale factor is one of
the legal scale-factor prefixes (Table 4-5), the corresponding scaling is applied.

Table 4-4. Predefined Scale Factors

Scale Factor Scaling Meaning

A 1 Amperes

F 1 Farads

ft 0.3048 feet

H 1 Henries

Hz 1 Hertz

in 0.0254 inches
E-5

ADS Simulator Input Syntax
Predefined Scale Factors

This type of scale factor is a predefined sequence of characters which the ADS
Simulator parses as a single token. The predefined scale factors are listed in
Table 4-4.

Single-character prefixes

If the first character of the scale factor is one of the legal scale-factor prefixes, the
corresponding scaling is applied.The single-character prefixes are based on the
metric system of scaling prefixes and are listed in Table 4-5.

For example, 3.5 GHz is equivalent to 3.5*10 9 and 12 nF is equivalent to 1.2*10 -8.
Note that most of the time, the ADS Simulator ignores any characters that follow the
single-character prefix. The exceptions are noted in the section on “Unrecognized
Scale Factors” on page -7.

Most of these scale factors can be used without any additional characters (e.g., 3.5 G ,
12n). This means that m, when used alone, stands for ‘‘milli’’.

meter 1 meters

meters 1 meters

metre 1 meters

metres 1 meters

mi 1609.344 miles

mil 2.54*10-5 mils

mils 2.54*10-5 mils

nmi 1852 nautical miles

Ohm 1 Ohms

Ohms 1 Ohms

S 1 Siemens

sec 1 seconds

V 1 Volts

W 1 Watts

Table 4-4. Predefined Scale Factors

Scale Factor Scaling Meaning
E-6

The underscore _ is provided to turn off scaling. For example, 1e-9 _farad is
equivalent to 10-9, and 1e-9 farad is equivalent to 10-24.

Predefined scale factors are case sensitive.

Unless otherwise noted, additional characters can be appended to a predefined scale
factor prefix without affecting its scaling value.

A predefined scale factor overrides any corresponding single-character-prefix scale
factor. For example, 3 mm is equivalent to 3*10-3, not 3*106. In particular, note that
M does not stand for milli, m does not stand for mega, and F does not stand for femto.

There are no scale factors for dBm, dBW, or temperature. For more information, refer
to the section on “Functions” on page -17 for conversion functions.

Unrecognized Scale Factors

The ADS Simulator treats unrecognizable scale factors as equal to 1 and generates a
warning message.

Table 4-5. Single-character prefixes

Prefix Scaling Meaning

T 1012 tera

G 109 giga

M 106 mega

K 103 kilo

k 103 kilo

- 1

m 10-3 milli

u 10-6 micro

n 10-9 nano

p 10-12 pico

f 10-15 femto

a 10-18 atto
E-7

ADS Simulator Input Syntax
Scale-Factor Binding

More than one scale factor may appear in an expression, so expressions like x in + y

mil are valid and behave properly.

Scale factors bind tightly to the preceding variable. For instance, 6 + 9 MHz is equal
to 9000006 . Use parentheses to extend the scope of a scale factor (e.g., (6 + 9) MHz).

Booleans

Many devices, models, and analyses have parameters that are boolean valued. Zero is
used to represent false or no, whereas any number besides zero represents true or
yes. The keywords yes and no can also be used.

Ground Nodes

Node 0 is assumed to be the ground node. Additional ground node aliases can be
defined using the ground statement. Multiple ground statements can be used to
define any number of ground aliases, but they must all occur at the top-level
hierarchy in the netlist.

General Form:

Ground [:name] node1 [... nodeN]

Example:

Ground gnd

Global Nodes

Global nodes are user-defined nodes which exist throughout the hierarchy. The global
nodes must be defined on the first lines in the netlist. They must be defined before
they are used.

General Form:

globalnode nodename1 [nodename2] [... nodenameN]

Example:

globalnode sumnode my_internal_node
E-8

Comments

Comments are introduced into an ADS Simulator file with a semicolon; they
terminate at the end of the line. Any text on a line that follows a semicolon is ignored.
Also, all blank lines are ignored.

Statement Order

Models can appear anywhere in the netlist. They do not have to be defined before a
model instance is defined.

Some parameters expect a device instance name as the parameter value. In these
cases, the device instance must already have been defined before it is referenced. If
not, the device instance name can be entered as a quoted string using double
quotes (").

Naming Conventions

The full name for an instance parameter is of the form:

[pathName].instanceName.parameterName[index]

where pathName is a hierarchical name of the form

[pathName].subcircuitInstanceName

The same naming convention is used to reference nodes, variables, expressions,
functions, device terminals, and device ports.

For device terminals, the terminal name can be either the terminal name given in the
device description, or tn where n is the terminal number (the first terminal in the
description is terminal 1, etc.). Device ports are referenced by using the name pm,
where m is the port number (the first pair of terminals in the device description is
port 1, etc.).

Note that t1 and p1 both correspond to the current flowing into the first terminal of a
device, and that t2 corresponds to the current flowing into the second terminal. If
terminals one and two define a port, then the current specified by t2 is equal and
opposite to the current specified by t1 and p1.
E-9

ADS Simulator Input Syntax
Currents

The only currents that can be accessed for simulation, optimization, or output
purposes are the state currents.

State currents

Most devices are voltage controlled, that is, their terminal currents can be calculated
given their terminal voltages. Circuits that contain only voltage-controlled devices
can be solved using node analysis. Some devices, however, such as voltage sources,
are not voltage controlled. Since the only unknowns in node analysis are the node
voltages, circuits that contain non-voltage-controlled devices cannot be solved using
node analysis. Instead, modified node analysis is used. In modified node analysis, the
unknown vector is enlarged. It contains not only the node voltages but the branch
currents of the non-voltage-controlled devices as well. The branch currents that
appear in the vector of unknowns are called state currents. Since the ADS Simulator
uses modified node analysis, the values of the state currents are available for output.

If the value of a particular current is desired but the current is not a state current,
insert a short in series with the desired terminal. The short does not affect the
behavior of the circuit but does create a state current corresponding to the desired
current.

To reference a state current, use the device instance name followed by either a
terminal or port name. If the terminal or port name is not specified, the state current
defaults to the first state current of the specified device. Note that this does not
correspond to the current through the first port of the device whenever the current
through the first port is not a state current. For some applications, the positive state
current must be referenced, so a terminal name of t1 or t3 is acceptable but not t2.
Using port names avoids this problem. The convention for current polarity is that
positive current flows into the positive terminal.

Instance Statements
General Form:

type [:name] node1 ... nodeN [[param=value] ...]

type [:name] [[param=value] ...]

Examples:
E-10

ua741:OpAmp in out out
C:C1 2 3 C=10pf
HB:Distortion1 Freq=10GHz

The instance statement is used to define to the ADS Simulator the information
unique to a particular instance of a device or an analysis. The instance statement
consists of the instance type descriptor and an optional name preceded by a colon. If
it is a device instance with terminals, the nodes to which the terminals of the
instance are connected come next. Then the parameter fields for the instance are
defined. The parameters can be in any order. The nodes, though, must appear in the
same order as in the device or subcircuit definition.

The type field may contain either the ADS Simulator instance type name, or a
user-supplied model or subcircuit name. The name can be any valid name, which
means it must begin with a letter, can contain any number of letters and digits, must
not contain any delimiters or non alphanumeric characters, and must not conflict
with other names including node names.

Model Statements
General Form:

model name type [[param = value] ...]

Examples:

model NPNbjt bjt NPN=yes Bf=100 Js=0.1fa

Often characteristics of a particular type of element are common to a large number of
instances. For example, the saturation current of a diode is a function of the process
used to construct the diode and also of the area of the diode. Rather than describing
the process on each diode instantiation, that description is done once in a model
statement and many diode instances refer to it. The area, which may be different for
each device, is included on each instance statement. Though it is possible to have
several model statements for a particular type of device, each instance may only
reference at most one model. Not all device types support model statements.

The name in the model statement becomes the type in the instance statement. The
type field is the ADS Simulator-defined model name. Any parameter value not
supplied will be set to the model’s default value.

Most models, such as the diode or bjt models, can be instantiated with an instance
statement. There are exceptions. For instance, the Substrate model cannot be
E-11

ADS Simulator Input Syntax
instantiated. Its name, though, can be used as a parameter value for the Subst
parameter of certain transmission line devices.

Subcircuit Definitions
General Form:

Examples:

define DoubleTuner (top bottom left right)
parameters vel=0.95 r=1.0 l1=.25 l2=.25
 tline:tuner1 top bottom left left len=l1 vel=vel r=r
 tline:tuner2 top bottom right right len=l2 vel=2*vel r=r
end DoubleTuner
DoubleTuner:InputTuner t1 b2 3 4 l1=0.5

A subcircuit is a named collection of instances connected in a particular way that can
be instantiated as a group any number of times by subcircuit calls. The subcircuit call
is in effect and form, an instance statement. Subcircuit definitions are simply circuit
macros that can be expanded anywhere in the circuit any number of times. When an
instance in the input file refers to a subcircuit definition, the instances specified
within the subcircuit are inserted into the circuit. Subcircuits may be nested. Thus a
subcircuit definition may contain other subcircuits. However, a subcircuit definition
cannot contain another subcircuit definition. All the definitions must occur at the top
level.

define subcircuitName (node1 ... nodeN)

[parameters name1 = [value1] ... name n = [value n]]

.

.

.

elementStatements

.

.

.

end [subcircuitName]
E-12

An instance statement that instantiates a subcircuit definition is referred to as a
subcircuit call. The node names (or numbers) specified in the subcircuit call are
substituted, in order, for the node names given in the subcircuit definition. All
instances that refer to a subcircuit definition must have the same number of nodes as
are specified in the subcircuit definition and in the same order. Node names inside
the subcircuit definition are strictly local unless they are a global ground defined with
a ground statement or global nodes defined with a globalnode statement. A subcircuit
definition with no nodes must still include the parentheses ().

Parameter specification in subcircuit definitions is optional. Any parameters that are
specified are referred to by name followed by an equals sign and then an optional
default value. If, when making a subcircuit call in your input file, you do not specify a
particular parameter, then this default value is used in that instance. Subcircuit
parameters can be used in expressions within the subcircuit just as any other
variable.

Subcircuits are a flexible and powerful way of developing and maintaining
hierarchical circuits. Parameters can be used to modify one instance of a subcircuit
from another. Names within a subcircuit can be assigned without worrying about
conflicting with the same name in another subcircuit definition. The full name for a
node or instance include its path name in addition to its instance name. For example,
if the above subcircuit is included in subckt2 which is itself included in subckt1 , then
the full path name of the length of the first transmission line is
subckt1.subckt2.tuner1.len .

Only enough of the path name has to be specified to unambiguously identify the
parameter. For example, an analysis inside subckt1 can reference the length by
subckt2.tuner1.len since the name search starts from the current level in the
hierarchy. If a reference to a name cannot be resolved in the local level of hierarchy,
then the parent is searched for the name, and so on until the top level is searched. In
this way, a sibling can either inherit its parent’s attributes or define its own.

Expression Capability
The ADS Simulator has a powerful and flexible symbolic expression capability, called
VarEqn, which allows the user to define variables, expressions, and functions in the
netlist. These can then be used to define other VarEqn expressions and functions, to
specify device parameters and optimization goals, etc.

The names for VarEqn variables, expressions, and functions follow the same
hierarchy rules that instance and node names do. Thus, local variables in a subcircuit
E-13

ADS Simulator Input Syntax
definition can assume values that differ from one instance of the subcircuit to the
next.

Functions and expressions can be defined either globally or locally anywhere in the
hierarchy. All variables are local by default. Local variables are known in the
subcircuit in which they are defined, and all lower subcircuits; they are not known at
higher levels. Expressions defined at the root (the top level) are known everywhere
within the circuit. To specify an expression to be global the global keyword must
precede the expression. The global keyword causes the variable to be defined at the
root of the hierarchy tree regardless of the lexical location.

Examples:

global exp1 = 2.718

The expression capability includes the standard math operations of + - / * ^ in
addition to parenthesis grouping. Scale factors are also allowed in general
expressions and have higher precedence than any of the math operators. For more
information, refer to the previous section on “Units and Scale Factors” on page -5.

Constants

An integer constant is represented by a sequence of digits optionally preceded by a
negative sign (e.g, 14, -3).

A real number contains a decimal point and/or an exponential suffix using the e

notation (e.g, 14.0 , -13e-10).

The only complex constant is the predefined constant j which is equal to the square
root of -1. It can be used to generate complex constants from real and integer
constants (e.g., j*3 , 9.1 + j*1.2e-2). The predefined functions complex() and
polar() can also be used to enter complex constants into an expression.

A string constant is delimited by single quotes (e.g.,’string’ ,’this is a string’).

Predefined Constants

Table 4-6. Predefined Constants

Constant Definition Constant Definition

boltzmann Boltzmann’s constant ln10 2.30...

c0 Speed of light in a vacuum j Square root of -1
E-14

Variables

General Form:

variableName = constantExpression

Examples:

x1 = 4.3inches + 3mils
syc_a = cos(1.0+sin(pi*3))
Zin = 7.8k - j*3.2k

The type of a variable is determined by the type of its value. For example, x=1 is an
integer, x=1+j is complex, and x = “tuesday” is a string.

Predefined Variables

In addition to the predefined constants, there are several predefined global variables.
Since they are variables, they can be modified and swept.

DF_DefaultInt Reference to default int value
defined in Data Flow controller

pi 3.14...

DF_ZERO_OHMS Symbol for use as zero ohms planck Planck’s constant

e 2.718... qelectron Charge of an electron

e0 Permittivity of a vacuum tinyReal Smallest real number

hugeReal Largest real number u0 Permeability of a vacuum

__fdd Flag to indicate a new FDD instance

__fdd_v Flag to indicate updated FDD state vars

_ac_state Is analyses in ac state

_c1 to _c30 Symbolic controlling current

_dc_state Is analyses in dc state

_freq1 to _freq12 Fundamental frequency

_harm Harmonic number index for sources and FDD

_hb_state Is analyses in harmonic balance state

_p2dInputPower Port input power for P2D simulation

_sigproc_state Is analyses in signal processing state

Table 4-6. Predefined Constants
E-15

ADS Simulator Input Syntax
The sourcelevel variable is used by the spectral analysis when it needs to gradually
increase source power from 0 to full scale to obtain convergence. It can be used by the
user to sweep the level of ALL spectral source components, but is not recommended.
The _v and _i variables should only be used in the context of the sdd device.

_sm_state Is analyses in sm state

_sp_state Is analyses in sparameter analysis state

_tr_state Is analyses in transient state

CostIndex Index for optimization cost plots

DF_Value Reference to corresponding value defined in Data Flow
controller

DefaultValue Signal processing default parameter value

DeviceIndex Device Index used for noise contribution or DC OP output

dcSourceLevel used for DC source-level sweeping

doeindex Index for Design of Experiment sweeps

freq The frequency in Hertz of the present simulation (1MHz)

logNodesetScale Used for DC nodeset simulation

logRshunt Used for DC Rshunt sweeping

mcTrial Trial counter for Monte Carlo based simulations

noisefreq The spectral noise analysis frequency

Nsample Signal processing analysis sample number

optIter Optimization job iteration counter

temp The ambient temperature, in degrees Celsius. (25o C)

time The analysis time

timestep The analysis time step

tranorder The transient analysis integration order

ScheduleCycle Signal processing schedule cycle number

sourcelevel The relative attenuation of the spectral sources (1.0)

ssfreq The small-signal mixer analysis frequency

_v1 to _v19 State variable voltages used by the sdd device

_i1 to _i19 State variable currents used by the sdd device

 mc_index Index variable used by Monte Carlo controller
E-16

Expressions

General Form:

expressionName = nonconstantExpression

Examples:

x1 = 4.3 + freq;
syc_a = cos(1.0+sin(pi*3 + 2.0*x1))
Zin = 7.8 ohm + j*freq * 1.9 ph
y = if (x equals 0) then 1.0e100 else 1/x endif

The main difference between expressions and variables is that a variable can be
directly swept and modified by an analysis but an expression cannot. Note however,
that any instance parameter that depends on an expression is updated whenever one
of the variables that the expression depends upon is changed (e.g., by a sweep).

Predefined Expressions

Functions

General Form:

functionName([arg1, ..., argn]) = expression

Examples:

y_srl(freq, r, l) = 1.0/(r + j*freq*l)
expl(a,b) = exp(a)*step(b-a) + exp(b)*(a-b-1)*step(a-b)

In expression, the function’s arguments can be used, as can any other VarEqn
variables, expressions, or functions.

 gaussian = _gaussian_tol(10.0) default gaussian distribution

 nfmin = _nfmin() the minimum noise figure

 omega = 2.0*pi*freq the analysis frequency

 rn = _rn() the noise resistance

 sopt = _sopt the optimum noise match

tempkelvin = temp + 273.15 the analysis temperature

 uniform = _uniform_tol(10.0) default uniform distribution
E-17

ADS Simulator Input Syntax
Predefined Functions

_discrete_density(...) user-defined discrete density function

_gaussian([mean, sigma,
lower_n_sigmas,
upper_n_sigmas,
lower_n_sigmas_del,
upper_n_sigmas_del])

gaussian density function

_gaussian_tol[percent_tol,
lower_n_sigmas,
upper_n_sigmas,
lower_percent_tol,
upper_percent_tol,
lower_n_sigmas_del,
upper_n_sigmas_del])

gaussian density function (tolerance version)

_get_fnom_freq(...) Get analysis frequency for FDD carrier frequency index and
harmonic

_lfsr(x, y, z) linear feedback shift register (trigger, seed, taps)

_mvgaussian(...) multivariate gaussian density function (correlation version)

_mvgaussian_cov(...) multivariate gaussian density function (covariance version)

_n_state(x, y) _n_state(arr, val) array index nearest value

_pwl_density(...) user-defined piecewise-linear density function

_pwl_distribution(...) user-defined piecewise-linear distribution function

_randvar(distribution,
mcindex, [nominal,
tol_percent, x_min,
x_max, lower_tol,
upper_tol, delta_tol,
tol_factor])

random variable function

_shift_reg(x, y, z, t) (trigger, mode(ParIn:MSB1st), length, input)

_uniform([lower_bound,
upper_bound])

uniform density function

_uniform_tol([percent_tol,
lower_tol, upper_tol])

uniform density function (tolerance version)

abs(x) absolute value function
E-18

access_all_data(...) datafile indep+dep lookup/interpolation function

access_data(...) datafile dependents’ lookup/interpolation function

arcsinh(x) arcsinh function

arctan(x) arctan function

atan2(y, x) arctangent function (two real arguments)

awg_dia(x) wire gauge to diameter in meters

bin(x) function convert a binary to integer

bitseq(time, [clockfreq,
trise, tfall, vlow, vhigh,
bitseq])

bitsequence function

complex(x, y) real-to-complex conversion function

conj(x) complex-conjugate function

cos(x) cosine function

cos_pulse(time, [low,
high, delay, rise, fall,
width, period])

periodic cosine shaped pulse function

cosh(x) hyperbolic cosine function

cot(x) cotangent function

coth(x) hyperbolic cotangent function

ctof(x) convert Celsius to Fahrenheit

ctok(x) convert Celsius to Kelvin

cxform(x, y, z) transform complex data

damped_sin(time, [offset,
amplitude, freq, delay,
damping, phase])

damped sin function

db(x) decibel function

dbm(x, y) convert voltage and impedance into dbm

dbmtoa(x, y) convert dbm and impedance into short circuit current

dbmtov(x, y) convert dbm and impedance into open circuit voltage

dbmtow(x) convert dBm to Watts

dbpolar(x, y) (dB,angle)-to-rectangular conversion function
E-19

ADS Simulator Input Syntax
dbwtow(x) convert dBW to Watts

deembed(x) deembedding function

deg(x) radian-to-degree conversion function

dep_data(x, y, [z]) dependent variable value

dphase(x, y) Continuous phase difference (radians) between x and y

dsexpr(x, y) Evaluate a dataset expression to an hpvar

dstoarray(x, [y]) Convert an hpvar to an array

echo(x) echo-arguments function

erf_pulse(time, [low, high,
delay, rise, fall, width,
period])

periodic error function shaped pulse function

eval_poly(x, y, z) polynomial evaluation function

exp(x) exponential function

exp_pulse(time, [low,
high, delay1, tau1,
delay2, tau2])

exponential pulse function

fread(x) raw-file reading function

ftoc(x) convert Fahrenheit to Celsius

ftok(x) convert Fahrenheit to Kelvin

get_array_size(x) Get the size of the array

get_attribute(...) value of attribute of a set of data

get_block(x, y) HPvar tree from block name function

get_fund_freq(x) Get the frequency associated with a specified fundamental index

get_max_points(x, y) maximum points of independent variable

imag(x) imaginary-part function

index(x, y, [z, t]) get index of name in array

innerprod(...) inner-product function

int(x) convert-to-integer function

itob(x, [y]) convert integer to binary

jn(x, y) bessel function
E-20

ktoc(x) convert Kelvin to Celsius

ktof(x) convert Kelvin to Fahrenheit

length(x) returns number of elements in array

limit_warn([x, y, z, t, u]) limit, default and warn function

list(...)

ln(x) natural log function

log(x) log base 10 function

mag(x) magnitude function

makearray(...) (1:real-2:complex-3:string, y, z..) or (array, startIndex, stopIndex)

max(x, y) maximum function

min(x, y) minimum function

multi_freq(time,
amplitude, freq1, freq2,
n, [seed])

multifrequency function

names(x, y) array of names of indepVars and/or depVars in dataset

norm(x) norm function

phase(x) phase (in degrees) function

phase_noise_pwl(...) piecewise-linear function for computing phase noise

phasedeg(x) phase (in degrees) function

phaserad(x) phase (in radians) function

polar(x, y) polar-to-rectangular conversion function

polarcpx(...) polar to rectangular conversion function

pulse(time, [low, high,
delay, rise, fall, width,
period])

periodic pulse function

pwl(...) piecewise-linear function

pwlr(...) piecewise-linear-repeated function

rad(x) degree-to-radian conversion function

ramp(x) ramp function

read_data(...) read_data("file-dataset", "locName", "fileType")

read_lib(...) read_lib("libName", "item", "fileType")
E-21

ADS Simulator Input Syntax
Note The VarEqn trigonometric functions always expect the argument to be
specified in radians. If the user wants to specify the angle in degrees then the VarEqn
function deg() can be used to convert radians to degrees or the VarEqn function
rad() can be used to convert degrees to radians.

real(x) real-part function

rect(x, y, z) rectangular pulse function

rem(...) remainder function

ripple(x, y, z, v) ripple(amplitude, intercept, period, variable) sinusoidal ripple
function

rms(...) root-mean-square function

rpsmooth(x) rectangular-to-polar smoothing function

scalearray(x, y) scalar times a vector (array) function

setDT(x) Turns on discrete time transient mode (returns argument)

sffm(time, [offset,
amplitude, carrier_freq,
mod_index,
signal_freq])

signal frequency FM

sgn(x) signum function

sin(x) sine function

sinc(x) sin(x)/x function

sinh(x) hyperbolic sine function

sprintf(x, y) formatted print utility

sqrt(x) square root function

step(x) step function

tan(x) tangent function

tanh(x) hyperbolic tangent function

vswrpolar(x, y) (VSWR,angle)-to-rectangular conversion function
E-22

Detailed Descriptions of the Predefined Functions

_discrete_density (x1, p1, x2, p2, …) allows the user to define a discrete density
distribution: returns x1 with probability p1, x2 with probability p2, etc. The xn, pn
pairs needn’t be sorted. The pns will be normalized automatically.

_gaussian([mean, sigma, lower_n_sigmas, upper_n_sigmas,

lower_n_sigmas_del, upper_n_sigmas_del]) returns a value randomly distributed
according to the standard bell-shaped curve. mean defaults to 0. sigma defaults to 1.
lower_n_sigmas, upper_n_sigmas define truncation limits (default to 3).
lower_n_sigmas_del and upper_n_sigmas_del define a range in which the probability
is zero (a bimodal distribution). _gaussian_tol([percent_tol, lower_n_sigmas,

upper_n_sigmas, lower_percent_tol, upper_percent_tol, lower_n_sigmas_del,
upper_n_sigmas_del]) is similar, but percent_tol defines the percentage tolerance
about the nominal value (which comes from the RANDVAR expression).

_get_fnom_freq(x) returns the actual analysis frequency associated with the carrier
frequency specified in the surrounding FDD context. If x is negative, it is the carrier
frequency index. If x is positive, it is the harmonic index.

_mvgaussian (N, mean1, … meanN, sigma1, … sigmaN, correlation1,2, …, correlation1,N,
…, correlationN-1,N) multivariate gaussian density function (correlation version).
Returns an N dimensional vector. The correlation coefficient matrix must be positive
definite. _mvgaussian_cov(N, mean1, … meanN, sigma1, … sigmaN, covariance1,2, ...,
covariance1,N, ..., covarianceN-1,N) is similar, but defined in terms of covariance. The
covariance matrix must be positive definite.

_pwl_density(x1, p1, x2, p2, …) returns a value randomly distributed according to the
piecewise-linear density function with values pn at xn, i.e. it will return xn with
probability pn and return

The xn, pn pairs needn’t be sorted. The pns will be normalized automatically.
_pwl_distribution(x1, p1, x2, p2, …) is similar, but is defined in terms of the
distribution values. It will return a value less than or equal to xn with probability pn.
The xn, pn pairs will be sorted in increasing xn order. After sorting, the pns should
never decrease. The pns will be normalized so that pN=1.

xn ε with probability pn ε
pn 1+

pn–

xn 1+
xn–

-----------------------------++
E-23

ADS Simulator Input Syntax
_randvar(distribution, mcindex, [nominal, tol_percent, x_min, x_max, lower_tol,
upper_tol, delta_tol, tol_factor]) returns a value randomly distributed according to
the distribution. The value will be the same for a given value of mcindex. The other
parameters are interpreted according to the distribution.

_shift_reg(x, y, z, t) implements a z-bit shift register. x specifies the trigger. y = 0
means LSB First, Serial To Parallel, 1 means MSB First, Serial To Parallel, 2 means
LSB First, Parallel to Serial, 3 means MSB First, Parallel to Serial. t is the input
(output) value.

_uniform([lower_bound, upper_bound]) returns a value between lower_bound and
upper_bound. All such values are equally probable. _uniform_tol([percent_tol,
lower_tol, upper_tol]) is similar, but tolerance version.

access_all_data(InterpMode, source, indep1, dep1 …) datafile independent and
dependent lookup/interpolation function.

access_data(InterpMode, nData, source, dep1 …) datafile dependents’
lookup/interpolation function.

bin(String) calculates the integer value of a sequence of 1’s and 0’s. For example
bin(’11001100’) = 204. The argument of the bin function must be a string denoted by
single quotes. The main use of the bin function is with the System Model Library to
define an integer which corresponds to a digital word.

cxform(x, OutFormat, InFormat) transform complex data x from format InFormat to
format OutFormat. The values for OutFormat and InFormat are 0: real and
imaginary, 1: magnitude (linear) and phase (degrees), 2: magnitude (linear) and
phase (radians), 3: magnitude (dB) and phase (degrees), 4: magnitude (dB) and phase
(radians), 5: magnitude (SWR) and phase (degrees), 6: magnitude (SWR) and phase
(radians). For example, to convert linear magnitude and phase in degrees to real and
imaginary parts:

result = cxform(invar, 0, 1)

damped_sin(time, [offset, amplitude, freq, delay, damping, phase]). Refer to

“Transient Source Functions” on page -28.

The function db(x) is a shorthand form for the expression: 20log(mag(x)).

The deembed(x) function takes an array, x, of four complex numbers (the 2-port
S-parameter array returned from the VarEqn interp() function) and returns an array
of equivalent de-embedding S-parameters for that network. The array must be of
length four (2 x 2--two-port data only), or an error message will result. The
transformation used is:
E-24

where det is the determinant of the 2 x 2 array.

WARNING: This transformation assumes that the S-parameters are derived from
equal port termination impedances. This transformation does not work when the port
impedances are unequal.

The function deg(x) converts from radians to degrees.

dphase(x, y) Calculates phase difference phase(x)-phase(y) (in radians).

dsexpr(x, y) Evaluate x, a DDS expression, to an hpvar. y is the default location data
directory.

echo(x) prints argument on terminal and returns it as a value.

erf_pulse(time, [low, high, delay, rise, fall, width, period]) periodic pulse function,
edges are error function (integral of Gaussian) shaped.

eval_poly(x, y, z) y is a real number. z is an integer that describes what to evaluate: -1
means the integral of the polynomial, 0 means the polynomial itself, +1 means the
derivative of the polynomial. x is a VarEqn array that contains real numbers. The

polynomial is

exp_pulse(time, [low, high, delay1, tau1, delay2, tau2]) Refer to “Transient Source
Functions” on page -28.

get_fund_freq(fund) returns the value of frequency (in Hertz) of a given fundamental
defined by fund.

S11
1– S11

det
---------=

S21
1– S21

det
---------=

S12
1– S12

det
---------=

S22
1– S22

det
---------=

x0 x1y x2y2 x3y3…+ + +
E-25

ADS Simulator Input Syntax
index(nameArray, "varName", [caseSense, length]) returns position of "varName" in
nameArray, -1 if not found. caseSense sets case-sensitivity, defaults to yes. length sets
how many characters to check, defaults to 0 (all).

innerprod(x, y) forms the inner product of the vectors x and y:

j and k are optional integers which specify a range of harmonics to include in the
calculation:

j defaults to 0 and k defaults to infinity.

int(x) Truncates the fractional part of x.

itob(x, [bits]) convert integer x to bits-bit binary string.

The function jn(n, x) is the n-th order bessel function evaluated at x.

limit_warn([Value, Min, Max, default, Name]) sets Value to default, if not set. Limits
it to Min and Max and generates a warning if the value is limited.

makearray(arg1[,arg2,..] creates an array with elements defined by arg1 to argN
where N can be any number of arguments. The data type of args must be Integer,
Real, or Complex and the same for all args.

word = bin(’1101’)
fibo = makearray(0,1,1,2,3,5,8,word)
foo = fibo[0]

multi_freq(time, amplitude, freq1, freq2, n, [seed]) seed defaults to 1. If it is 0, phase
is set to 0, otherwise it is used as a seed for a randomly-generated phase.

norm(x) returns the L-2 norm of the spectrum x:

j and k are optional integers which specify a range of harmonics to include in the
calculation:

innerprod x y,() xi
∗ yi

i 0=

n

∑=

innerprod x y j k, , ,() xi
∗ yi

i j=

k

∑=

norm x() innerprod x x,()=

norm x j k, ,() innerprod x x j k, , ,()=
E-26

j defaults to 0 and k defaults to infinity.

phase(x) is the same as phasedeg(x).

The function phasedeg(x) returns phase in degrees.

The function phaserad(x) returns phase in radians.

The function polarcpx(x[,leave_as_real]) takes a complex argument, assumes that the
real and complex part of the argument represents mag and phase (in radians)
information, and converts it to real/imaginary. If the argument is real or integer
instead of complex, the imaginary part is assumed to be zero. However, if the optional
leave_as_real variable is specified, and is the value ‘‘1’’ (note that the legal values are
‘‘0’’ and ‘‘1’’ only), a real argument will be not be converted to a complex one.

pulse(time, [low, high, delay, rise, fall, width, period]) Refer to “Transient Source
Functions” on page -28.

pwl(...) piecewise-linear function. Refer to “Transient Source Functions” on page -28.

pwlr(...) piecewise-linear-repeated function.

The function rect(t, tc, tp) is pulse function of variable t centered at time tc with
duration tp.

The function rad(x) converts from degrees to radians.

ramp(x) 0 for , x for

read_data(source, locName, [fileType]) returns data from a file or dataset. source =
“file” --- “dataset”. locName is the name of the source. fileType specifies the file type.

read_lib(libName, locName, [fileType]) returns data from a library. libName is the
name of the library. locName is the name of the source. fileType specifies the file type.
read_lib("libName", "item", "fileType")

rect(x, y, z) Returns:

rem(x, [y]) Returns remainder of dividing x/y. y defaults to 0 (which returns x).

rms(x) returns the RMS value (including DC) of the spectrum x:

Table 4-7.

z |x - y| < |z| |x - y| > |z|

> 0 1 0

< 0 0 1

x 0< x 0≥
E-27

ADS Simulator Input Syntax
j and k are optional integers which specify a range of harmonics to include in the
calculation:

j defaults to 0 and k defaults to infinity.

The function rpsmooth(x) takes a VarEqn pointer (one returned by readraw()),
converts to polar format the rectangular data given by the VarEqn pointer, and
smooths out ‘phase discontinuities’.

WARNING: This function uses an algorithm that assumes that the first point is
correct (i.e., not off by some multiple of) and that the change in phase between any
two adjacent points is less than . This interpolation will not work well with noisy
data or with data within roundoff error of zero. It should be used only with
S-parameters in preparation for interpolation or extrapolation by one of the
interpolation functions like interp1(). Also note that the result is left in a polar
‘mag/phase’ format stored in a complex number; the real part is magnitude, and the
imaginary part is phase. The polarcpx() function must be used to convert the result of
the rpsmooth() function back into a real/imaginary format.

sffm(time, [offset, amplitude, carrier_freq, mod_index, signal_freq]) Refer to
“Transient Source Functions” on page -28.

The sprintf() function is similar to the C function which takes a format string for
argument s and a print argument x (x must be a string, an integer, or a real number)
and returns a formatted string. This string then may be written to the console using
the system function with an echo command.

Transient Source Functions

There are several built-in functions that mimic Spice transient sources. They are:

Table 4-8.

SPICE source ADS Simulator function

exponential exp_pulse(time, low, high, tdelay1, tau1, tdelay2, tau2)

rms x() norm x()
2.0

---------------------------=

rms x j k, ,() norm x j k, ,()
2.0

--=

2π
π

E-28

There functions are typically used with the vt parameter of the voltage source and
the it parameter of the current source.

exp_pulse

Examples:

ivs:vin n1 0 vt=exp_pulse(time)
ics:iin n1 0 it=exp_pulse(time, -0.5mA, 0.5mA, 10ns, 5ns, 20ns, 8ns)

TSTEP is the output step-time time specified on the TRAN analysis.

sffm

Examples:

ivs:vin n1 0 vt=sffm(time, , , , 0.5)
ics:iin n1 0 it=sffm(time, 0, 2, 1GHz, 1.2, 99MHz)

single-frequency FM sffm(time, offset, amplitude, carrier_freq, mod_index,
signal_freq)

damped sine damped_sin(time, offset, amplitude, freq, delay, damping)

pulse pulse(time, low, high, delay, rise, fall, width, period)

piecewise linear pwl(time, t1, x1, ..., tn, xn)

Table 4-9.

Arguments for exp_pulse

Name Optional Default

TIME NO

LOW YES 0

HIGH YES 1

TDELAY1 YES 0

TAU1 YES TSTEP

TDELAY2 YES TDELAY1 + TSTEP

TAU2 YES TSTEP

Table 4-8.
E-29

ADS Simulator Input Syntax
TSTOP is the stop time specified on the TRAN analysis.

damped_sin

Examples:

ivs:vin n1 0 vt=damped_sin(time)
ics:iin n1 0 it=damped_sin(time, 0, 5V, 500MHz, 50ns, 200ns)

TSTOP is the stop time specified on the TRAN analysis.

pulse

Examples:

ivs:vin n1 0 vt=pulse(time)
ics:iin n1 0 it=pulse(time, -5V, 5V, 500MHz, 50ns, 200ns)

Table 4-10.

Arguments for sffm

Name Optional Default

TIME NO

OFFSET YES 0

AMPLITUDE YES 1

CARRIER_FREQ YES 1/TSTOP

MOD_INDEX YES 0

SIGNAL_FREQ YES 1/TSTOP

Table 4-11.

Arguments for damped_sin

Name Optional Default

TIME NO

OFFSET YES 0

AMPLITUDE YES 1

FREQ YES 1/TSTOP

DELAY YES 0

DAMPING YES 1/TSTOP
E-30

TSTEP is the output step-time time specified on the TRAN analysis. TSTOP is the
stop time specified on the TRAN analysis.

pwl

Examples:

ivs:vin n1 0 vt=pulse(time, 0, 0, 1ns, 1, 10ns, 1, 15ns, 0)
ics:iin n1 0 it=pwl(time, 0, 0, 1ns, 1, 5ns, 1, 5ns, 0.5, 10ns,0.5, 15ns,
0)

Table 4-12.

Arguments for pulse

Name Optional Default

TIME NO

LOW YES 0

HIGH YES 1

DELAY YES 0

RISE YES TSTEP

FALL YES TSTEP

WIDTH YES TSTOP

PERIOD YES TSTOP

Table 4-13.

Arguments for pwl

Name Optional Default

TIME NO

T1 NO

X1 NO

T2 YES NONE

X2 YES NONE

.

.

.

.

.

.

.

.

.

E-31

ADS Simulator Input Syntax
Conditional Expressions

The ADS Simulator supports simple in-line conditional expressions:

if boolExpr then expr else expr endif

if boolExpr then expr elseif boolExpr then expr else expr endif

boolExpr is a boolean expression, that is, an expression that evaluates to TRUE or
FALSE.

expr is any non-boolean expression.

The else is required (because the conditional expression must always evaluate to
some value).

There can be any number of occurrences of elseif expr then expr.

A conditional expression can legally occur as the right-hand side of an expression or
function definition or, if parenthesized, anywhere in an expression that a variable can
occur.

Boolean operators

TN YES NONE

XN YES NONE

equals logical equals

= logical equals

== logical equals

notequals logical not equals

!= logical not equals

not logical negative

! logical negative

and logical and

&& logical and

or logical or

|| logical or

< less than

Table 4-13.
E-32

Boolean expressions

A boolean expression must evaluate to TRUE or FALSE and, therefore, must contain
a relational operator (equals, =, ==, notequals, !=, <, >, <=, or >=).

The only legal place for a boolean expression is directly after an if or an elseif .

A boolean expression cannot stand alone, that is,

x = a > b

is illegal.

Precedence

Tightest binding: equals, =, ==, notequals, !=, >, <, >=, <=

NOT, !

AND

Loosest binding: OR, ||

All arithmetic operators have tighter binding than the boolean operators.

Evaluation

Boolean expressions are short-circuit evaluated. For example, if when evaluating a
and b, expression a evaluates to FALSE, expression b will not be evaluated.

During evaluation of boolean expressions with arithmetic operands, the operand with
the lower type is promoted to the type of the other operand. For example, in 3 equals

x +j*b, 3 is promoted to complex.

A complex number cannot be used with <, >, <=, or >=. Nor can an array (and
remember that strings are arrays). This will cause an evaluation-time error.

Pointers can be compared only with pointers.

Examples:

Protect against divide by zero:

> greater than

<= less than or equals

>= greater than or equals
E-33

ADS Simulator Input Syntax
f(a) = if a equals 0 then 1.0e100 else 1.0/a endif

Nested if ’s #1:

f(mode) = if mode equals 0 then 1-a else f2(mode) endif
f2(mode) = if mode equals 1 then log(1-a) else f3(mode) endif
f3(mode) = if mode equals 2 then exp(1-a) else 0.0 endif

Nested if ’s #2:

f(mode) = if mode equals 0 then 1-a elseif mode equals 1 then log(1-a) \
elseif mode equals 2 then exp(1-a) else 0.0 endif

Soft exponential:

exp_max = 1.0e16
x_max = ln(exp_max)
exp_soft(x) = if x<x_max then exp(x) else (x+1-x_max)*exp_max endif

VarEqn Data Types
The four basic data types that VarEqn supports are integer, real, complex, and string.
There is a fifth data type, pointer, that is also supported. Pointers are not allowed in
an algebraic expression, except as an argument to a function that is expecting a
pointer. Strings are not allowed in algebraic expressions either except that addition of
strings is equivalent to catenation of the strings. String catenation is not
commutative, and since VarEqn’s simplification routines can internally change the
order of operands of commutative operators, this feature should be used cautiously. It
will most likely be replaced by an explicit catenation function.

Type conversion

The data type of a VarEqn expression is determined at the time the expression is
evaluated and depends on the data types of the terms in the expression. For example,
let y=3*x^2. If x is an integer, then y is integer-valued. If x is real, then y is
real-valued. If x is complex, then y is complex-valued.

As another example, let y=sqrt(2.5*x) . If x is a positive integer, then y evaluates to a
real number. If, however, x is a negative integer, then y evaluates to a complex
number.

There are some special cases of type conversion:

• If either operand of a division is integer-valued, it is promoted to a real before
the division occurs. Thus, 2/3 evaluates to 0.6666....
E-34

• The built-in trigonometric, hyperbolic, and logarithmic functions never return
an integer, only a real or complex number.

‘‘C-Preprocessor’’
Before being interpreted by the ADS Simulator, all input files are run through a
built-in preprocessor based upon a C preprocessor. This brings several useful features
to the ADS Simulator, such as the ability to define macro constants and functions, to
include the contents of another file, and to conditionally remove statements from the
input. All C preprocessor statements begin with # as the first character.

Unfortunately, for reasons of backward compatibility, there is no way to specify
include directories. The standard C preprocessor ‘‘-I ’’ option is not supported;
instead, ‘‘-I ’’ is used to specify a file for inclusion into the netlist.

File Inclusion

Any source line of the form

#include "filename"

is replaced by the contents of the file filename. The file must be specified with an
absolute path or must reside in either the current working directory or in
/$HPEESOF_DIR/circuit/components/.

Library Inclusion

The C preprocessor automatically includes a library file if the -N command line option
is not specified and if such a file exists. The first file found in the following list is
included as the library:

$HPEESOF_DIR/circuit/components/gemlib
$EESOF_DIR/circuit/components/gemlib
$GEMLIB
.gemlib
~/.gemlib
~/gemini/gemlib

A library file is specified by the user using the -I filename command line option. More
than one library may be specified. Specifying a library file prevents the ADS
Simulator from including any of the above library files.
E-35

ADS Simulator Input Syntax
Macro Definitions

A macro definition has the form;

#define name replacement-text

It defines a macro substitution of the simplest kind--subsequent occurrences of the
token name are replaced by replacement-text. The name consists of alphanumeric
characters and underscores, but must not begin with a numeric character; the
replacement text is arbitrary. Normally the replacement text is the rest of the line,
but a long definition may be continued by placing a “\” at the end of each line to be
continued. Substitutions do not occur within quoted strings. Names may be
undefined with

#undef name

It is also possible to define macros with parameters. For example,

#define to_celcius(t) (((t)-32)/1.8)

is a macro with the formal parameter t that is replaced with the corresponding actual
parameters when invoked. Thus the line

options temp=to_celcius(77)

is replaced by the line

options temp=(((77)-32)/1.8)

Macro functions may have more than one parameter, but the number of formal and
actual parameters must match.

Macros may also be defined using the -D command line option.

Conditional Inclusion

It is possible to conditionally discard portions of the source file. The #if line evaluates
a constant integer expression, and if the expression is non-zero, subsequent lines are
retained until an #else or #endif line is found. If an #else line is found, any lines
between it and the corresponding #endif are discarded. If the expression evaluates to
zero, lines between the #if and #else are discarded, while those between the #else

and #endif are retained. The conditional inclusion statements nest to an arbitrary
level of hierarchy. The following operators and functions can be used in the constant
expression;
E-36

The #ifdef and #ifndef lines are specialized forms of #if that test whether a name is
defined.

WARNING: Execution of preprocessor instructions depend on the order in which they
appear on the netlist. When using preprocessor statements make sure that they are
in the proper order. For example, if an #ifdef statement is used to conditionally
include part of a netlist, the corresponding #define statement is contained in a
separate file and #include is used to include the content of the file into the netlist, the
#include statement will have to appear before the #ifdef statement for the expression
to evaluate correctly.

Data Access Component
The Data Access Component provides a clean, unified way to access tabular data
from within a simulation. The data may reside in either a text file of a supported,
documented format (e.g. discrete MDIF, model MDIF, Touchstone, CITIfile), or a
dataset. It provides a variety of access methods, including lookup by index/value, as
well as linear, cubic spline and cubic interpolation modes, with support for
derivatives.

The Data Access Component provides a "handle" with which one may access data
from either a text file or dataset for use in a simulation. The DAC is implemented as
a cktlib subcircuit fragment with internally known expressions names (e.g. _DAC,

! Logical negation.

|| Logical or.

&& Logical and.

== Equal to.

!= Not equal to.

> Greater than.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

+ Addition.

defined(x) 1 if x defined, 0 otherwise.
E-37

ADS Simulator Input Syntax
_TREE) that are assigned via VarEqn calls such as read_data() and
access_all_data() . The accessed data can be used by other components (including
models, devices, variables, subcircuit calls and other DAC instances) in the netlist,
either by the specific file syntax or via the VarEqn function dep_data() .

The DAC can also be used to supply parameters to device and model components
from text files and datasets. In this case, the AllParams device/model parameter is
used to refer to a DAC component. The component’s parameters will then be accessed
from the DAC and supplied to the instance. Care is taken to ensure that only
matching (between parameter names in the component definition and DAC
dependent column names) data is used. Also, parameter data can be assigned "inline"
- as is usually done - in which case the inline data takes precedence over the DAC
data.

As the DAC component is composed of just a parameterized subcircuit, it allows
alterations (sweep, tune, optimize, yield) of its parameters. Consequently any
component that uses DAC data via file, dep_data() or AllParams will automatically be
updated when a DAC parameter is altered. A caveat with sweeping over files using
AllParams is that all the files must contain the same number of dependent columns of
data.

Below is an example definition of a simple DAC component that accesses discrete
values from a text file:

#uselib "ckt" , "DAC"
DAC:DAC1 File="C:\jeffm\ADS_testing\ADS13_test_prj/.\data\SweptData.ds"
Type="dataset" Block="S" InterpMode="linear" InterpDom="ri" iVar1="X"
iVal1=X iVar2="freq" iVal2=freq
S_Port:S2P1 _net1 0 _net6 0 S[1,1]=file{DAC1, "S[1,1]"}
S[1,2]=file{DAC1,"S[1,2]"} S[2,1]=1 S[2,2]=0 Recip=no

dindex = 1
DAC:atc1 File="vdcr.mdf" Type="dscr" \
InterpMode="index_lookup" iVar1=1 iVal1=dindex

And its use to provide the resistance value to a pair of circuit components:

R:R1 n1 0 R=file{atc1, "R"} kOhm
R:R2 n1 0 R=dep_data(atc1, "R") kOhm
Here, it provides the value to a variable:
V1 = file{atc1, "Vdc"}

V1 could be used elsewhere in the circuit, as expected.

In this example, a scaling factor applied to the result of a DAC access is shown:
E-38

File = "atc.mdf"
Type = "dscr"
Mode="index_lookup"
Cnom = "Cnom"
DAC:atc_s File=File Type=Type InterpMode=Mode iVar1=1 iVal1 = Cs_row
C:Cs n1 n2 C=file{atc_s, Cnom} Pf

In this example, a use of AllParams is shown to enter model parameters from a text
file:

File = "c:\gemini\vdcr.mdf"
Type = "dscr"
Mode="index_lookup"
DAC:dac1 File=File Type=Type InterpMode=Mode iVar1=1 iVal1 = ix
model rm1 R_Model R=0 AllParams = dac1._DAC
rm1:rm1i1 n3 0

Reserved Words
The words on the following pages have built-in meaning and should not be defined or
used in a way not consistent with their pre-defined meaning. They are listed in
alphabetical order in Table 4-14 for convenience.

Table 4-14. ADS Reserved Words

“A” on
page E
-41

“B” on
page E
-41

“C” on
page E
-41

“D” on
page E
-42

“E” on
page E
-42

“F” on
page E
-42

“G” on
page E
-43

“H” on
page E
-43

“I” on
page E
-43

“J” on
page E
-43

“K” on
page E
-43

“L” on
page E
-43

“M” on
page E
-43

“N” on
page E
-45

“O” on
page E
-46

“P” on
page E
-46

“Q” on
page E
-47

“R” on
page E
-47

“S” on
page E
-47

“T” on
page E
-49

“U” on
page E
-49

“V” on
page E
-50

“W” on
page E
-50

“X” on
page E
-50

“Y” on
page E
-50

“Z” on
page E
-50

“a” on
page E
-54

“b” on
page E
-54

“c” on
page E
-54

“d” on
page E
-55

“e” on
page E
-55

“f” on
page E
-56

“g” on
page E
-56

“h” on
page E
-56

“i” on
page E
-56

“j” on
page E
-57

“k” on
page E
-57

“l” on
page E
-57

“m” on
page E
-58

“n” on
page E
-58
E-39

ADS Simulator Input Syntax
“o” on
page E
-58

“p” on
page E
-58

“q” on
page E
-59

“r” on
page E
-59

“s” on
page E
-59

“t” on
page E
-60

“u” on
page E
-60

“v” on
page E
-60

“w” on
page E
-61

“x” on
page E
-61

“y” on
page E
-61

“z” on
page E
-61

“__” on
page E
-50

“_” on
page E
-50

Table 4-14. ADS Reserved Words
E-40

A

AC
ACPWDS
 ACPWDTL
AIRIND1
Alter
Amplifier
AmplifierP2D
AntLoad

B

BFINL
BFINLT
BJT
BR3CTL
BR4CTL
BRCTL
BROCTL
Bessel
BudLinearization
Butterworth

C

C
CAPP2
CAPQ
CIND2
CLIN
CLINP
COAX
COAXTL
CPW
CPWCGAP
CPWCPL2
CPWCPL4
CPWCTL
CPWDS
CPWEF
CPWEGAP
E-41

ADS Simulator Input Syntax
CPWG
CPWOC
CPWSC
CPWSUB
CPWTL
CPWTLFG
CTL
C_Model
Chain
Chebyshev
Connector
CostIndex
Crossover

D

DC
DF
DFDevice1
DFDevice2
DF_DefaultInt
DF_Value
DF_ZERO_OHMS
DICAP
DILABMLC
DOE
DRC
DefaultValue
DeviceIndex
Diode

E

EE_BJT2
EE_FET3
EE_HEMT1
EE_MOS1
ETAPER
Elliptic

F

E-42

FDD
FINLINE
FSUB

G

GCPWTL
GMSK_Lowpass
GaAs
Gaussian
Goal

H

HB
HP_Diode
HP_FET
HP_FET2
HP_MOSFET
Hybrid

I

IFINL
IFINLT
INDQ
I_Source
InitCond
InoiseBD

J

JFET

K

L

L
LineCalcTest

M

MACLIN
MACLIN3
MBEND
E-43

ADS Simulator Input Syntax
MBEND2
MBEND3
MBSTUB
MCFIL
MCLIN
MCORN
MCROS
MCROSO
MCURVE
MCUREVE2
MGAP
MICAP1
MICAP2
MICAP3
MICAP4
MLANG
MLANG6
MLANG8
MLEF
MLIN
MLOC
MLSC
MLYRSUB
MOS9
MOSFET
MRIND
MRINDELA
MRINDELM
MRINDNBR
MRINDWNR
MRSTUB
MS2CTL
MS3CTL
MS4CTL
MS5CTL
MSABND
MSACTL
MSAGAP
MSBEND
E-44

MSCRNR
MSCROSS
MSCTL
MSGAP
MSIDC
MSIDCF
MSLANGE
MSLIT
MSOBND
MSOC
MSOP
MSRBND
MSRTL
MSSLIT
MSSPLC
MSSPLR
MSSPLS
MSSTEP
MSSVIA
MSTAPER
MSTEE
MSTEP
MSTL
MSUB
MSVIA
MSWRAP
MTAPER
MTEE
MTEEO
MTFC
MextramBJT
Mixer
MixerIMT
Multipath
Mutual

N

NodeSet
NoiseCorr2Port
E-45

ADS Simulator Input Syntax
Noisey2Port
Nsample

O

OldMonteCarlo
OldOpt
OldOptim
OldYield
Optim
OptimGoal
Options
OscPort
OutSelector

P

PCBEND
PCCORN
PCCROS
PCCURVE
PCILC
PCLIN1
PCLIN10
PCLIN2
PCLIN3
PCLIN4
PCLIN5
PCLIN6
PCLIN7
PCLIN8
PCLIN9
PCSTEP
PCSUB
PCTAPER
PCTEE
PCTRACE
PC_Bend
PC_Clear
PC_Corner
PC_CrossJunction
PC_Crossover
E-46

PC_Gap
PC_Line
PC_OpenStub
PC_Pad
PC_Slanted
PC_Taper
PC_Tee
PC_Via
PIN
PIN2
PLCQ
ParamSweep
PinDiode
PoleZero
Polynomial
Port
PowerBounce
PowerGroundPlane

Q

R

R
RCLIN
RIBBON
RIBBON_MDS
RIND
RWG
RWGINDF
RWGT
RWGTL
R_Model
RaisedCos

S

SAGELIN
SAGEPAC
SBCLIN
SBEND
SBEND2
E-47

ADS Simulator Input Syntax
SCLIN
SCROS
SCURVE
SDD
SL3CTL
SL4CTL
SL5CTL
SLABND
SLCQ
SLCRNR
SLCTL
SLEF
SLGAP
SLIN
SLINO
SLOBND
SLOC
SLOC_MDS
SLOTTL
SLRBND
SLSC
SLSTEP
SLTEE
SLTL
SLUCTL
SLUTL
SMITER
SOCLIN
SPIND
SS3CTL
SS4CTL
SS5CTL
SSACTL
SSCLIN
SSCTL
SSLANGE
SSLIN
SSSPLC
SSSPLR
E-48

SSSPLS
SSSUB
SSTEP
SSTFR
SSTL
SSUB
SSUBO
S_Param
S_Port
ScheduleCycle
Short
Substrate
SweepPlan
SwitchV
SwitchV_Model

T

TAPIND1
TFC
TFC_MDS
TFR
TFR_MDS
TL
TLIN
TLIN4
TLINP
TLINP4
TL_New
TQAVIA
TQCAP
TQFET
TQFET2
TQIND
TQRES
TQSVIA
TQSWH
TQTL
Tran

U

E-49

ADS Simulator Input Syntax
UFINL
UFINLT
Unalter

V

VBIC
VIA
VIA2
V_Source
VnoiseBD

W

WIRE
WIRE_MDS

X

Y

Y_Port
Yield
YieldOptim
YieldSpec
YieldSpecOld

Z

Z_Port

__

__fdd
__fdd_v

_

_ac_state
_c1
_c10
_c11
_c12
_c13
_c14
_c15
E-50

_c16
_c17
_c18
_c19
_c2
_c20
_c21
_c22
_c23
_c24
_c25
_c26
_c27
_c28
_c29
_c30
_c4
_c5
_c6
_c7
_c8
_c9
_dc_state
_default
_discrete_density
_divn
_freq1
_freq10
_freq11
_freq12
_freq2
_freq3
_freq4
_freq5
_freq6
_freq7
_freq8
_freq9
_gaussian
E-51

ADS Simulator Input Syntax
_gaussian_tol
_get_fnom_freq
_get_fund_freq_for_fdd
_harm
_hb_state
_i1
_i10
_i11
_i12
_i13
_i14
_i15
_i16
_i17
_i18
_i19
_i2
_i20
_i21
_i22
_i23
_i24
_i25
_i26
_i27
_i28
_i29
_i3
_i30
_i4
_i5
_i6
_i7
_i8
_i9
_lfsr
_mvgaussian
_mvgaussian_cov
_n_state
E-52

_nfmin
_p2dInputPower
_phase_freq
_pwl_density
_pwl_distribution
_randvar
_rn
_shift_reg
_si
_si_bb
_si_d
_si_e
_sigproc_state
_sm_state
_sopt
_sp_state
_sv
_sv_bb
_sv_d
_sv_e
_tn
_to
_tr_state
_tt
_uniform
_uniform_tol
_v1
_v10
_v11
_v12
_v13
_v14
_v15
_v16
_v17
_v18
_v19
_v2
_v20
E-53

ADS Simulator Input Syntax
_v21
_v22
_v23
_v24
_v25
_v26
_v27
_v28
_v29
_v3
_v30
_v4
_v5
_v6
_v7
_v8
_v9
_xcross

a

abs
access_all_data
access_data
aele
and
arcsinh
arctan
atan2
awg_dia

b

bin
bitseq
boltzmann
by

c

c0
complex
conj
E-54

cos
cos_pulse
cosh
cot
coth
coupling
ctof
ctok
cxform

d

d_atan2
damped_sin
db
dbm
dbmtoa
dbmtov
dbmtow
dbpolar
dbwtow
dcSourceLevel
deembed
define
deg
delay
dep_data
deriv
discrete
distcompname
doe
doeindex
dphase
dsexpr
dstoarray

e

e
e0
echo
else
E-55

ADS Simulator Input Syntax
elseif
end
endif
equals
erf_pulse
eval_poly
exp
exp_pulse

f

file
fread
freq
freq_mult_coef
freq_mult_poly
ftoc
ftok

g

gauss
gaussian
generate_gmsk_iq_spectra
generate_gmsk_pulse_spectra
generate_piqpsk_spectra
generate_pulse_train_spectra
generate_qam16_spectra
generate_qpsk_pulse_spectra
get_array_size
get_attribute
get_block
get_fund_freq
get_max_points
global
globalnode
ground

h

hugereal

i

E-56

i
if
ilsb
imag
index
innerprod
inoise
int
internal_generate_gmsk_iq_spectra
internal_generate_gmsk_pulse_spectra
internal_generate_piqpsk_spectra
internal_generate_pulse_train_spectra
internal_generate_qam16_spectra
internal_generate_qpsk_pulse_spectra
internal_get_fund_freq
internal_window
interp
interp1
interp2
interp3
interp4
iss
itob
iusb

j

jn

k

ktoc
ktof

l

lbtran
length
limit_warn
list
ln
ln10
local
E-57

ADS Simulator Input Syntax
log
logNodesetScale
logRshunt
log_amp
log_amp_cas

m

mag
makearray
max
mcTrial
mcindex
min
model
multi_freq

n

names
nested
nf
nfmin
no
nodoe
noisefreq
noopt
norm
nostat
not
notequals

o

omega
opt
optIter
or

p

parameters
phase
phase_noise_pwl
E-58

phasedeg
phaserad
planck
polar
polarcpx
ppt
pulse
pwl
pwlr

q

qelectron
qinterp

r

rad
ramp
randtime
rawtoarray
read_data
read_lib
readdata
readlib
readraw
real
rect
rem
ripple
rms
rn
rpsmooth

s

scalearray
sens
setDT
sffm
sgn
sin
sinc
E-59

ADS Simulator Input Syntax
sine
sinh
sink
sopt
sourceLevel
sprintf
sqrt
ssfreq
stat
step
strcat
stypexform
sym_set
system

t

tan
tanh
temp
tempkelvin
thd
then
time
timestep
tinyreal
to
toi
tranorder
transform

u

u0
unconst
unicap
uniform

v

v
value
vlsb
E-60

vnoise
vss
vswrpolar
vusb

w

window

x

y

yes

z

E-61

ADS Simulator Input Syntax
E-62

Index

A
ADS Simulator, 2-1

help, 2-2
output

instance parameters, 2-2
instance statement, 2-2
model parameters, 2-3
model statement, 2-3

ArtistUtilities, 1-3
attribute definitions

boolean, 2-5
character string, 2-6
complex number, 2-5
device instance, 2-6
integer, 2-5
modifiable, 2-5
optimizable, 2-5
readable, 2-5
real number, 2-5
required, 2-5
settable, 2-5

C
commands

cdfDump, 3-5, 3-8
cdfDumpAll, B-1
hpeesofsim, 2-1

component description format
cdfDumpAll, B-1
editing the cdf, 3-5, 3-6
instance parameters, 4-2
loading the cdf, 3-17
modifying the cdf, 3-4
new simulator, B-3
outputting the cdf, 3-5
simulation information, 3-5, 3-6
tool filter, B-3

D
directories

scripts, D-4
simulator, D-1, D-2
symbolic links, D-2

E
editing

cdf, 3-5, 3-6
environment, 2-1
expressions

instance parameters, 4-6
model parameters, 4-3, 4-6
VarEqn block, 4-3

F
files

simInfo.il, D-1
formatting

model, 2-1
netlist, 2-1

functions
almBuildLibrary, D-3
netlisting

IdfCompPrim, 3-17
IdfDevPrim, 3-17

G
geminiInclude, 4-4

I
instance parameters, 2-2
instance statement, 2-2

L
libraries

analogLib, 1-1, 1-2, D-1
basic, 1-1, C-1
modifying, C-1, D-1
nlpglobals, C-1

M
model files

capitalization, 4-1
continuation character, 4-1
creating, 4-1
default parameter value, 4-1
model parameters, 4-3
subnetworks, 4-2
syntax, 4-1

model formatting, 2-1
Index-1

model parameters, 2-3
attribute definitions, 2-5
expressions, 4-3, 4-6
model file, 4-3

model statement, 2-3
modifying

cdf, 3-4
netlisting functions, 3-17

N
netlist

formatting, 2-1
netlist include component

geminiInclude, 4-4
netlisting functions

IdfCompPrim, 3-17
IdfDevPrim, 3-17
modifying, 3-17

S
scripts

analogLib, D-3
directories, D-4

shell variables, 1-2
simulation information, 3-5, 3-7, 3-8

additional notes, 3-16
componentName, 3-9
instParameters, 3-9
macroArguments, 3-9
modelArguments, 3-9
namePrefix, 3-12
netlistProcedure, 3-8
otherParameters, 3-8
propMapping, 3-12
termMapping, 3-9
termOrder, 3-9
typeMapping, 3-13

simulator directories, D-1, D-2

V
VarEqn, 4-3
viewing

simulation information, 3-7, 3-8
views

ads, 3-1, C-1
ads symbol, 3-1
stop view, 3-1
Index-2

	Contents
	Chapter 1: Introduction
	Using Examples
	Intended Audience

	Chapter 2: Getting ADS Device Parameter Information
	Listing Available Devices
	Getting Device Parameters
	Viewing Device Output

	Chapter 3: Creating the Netlist Interface
	Creating the ads Symbol View for a Component
	Modifying the Component Description Format
	Getting Existing CDF Information for a Component
	Editing the CDF File
	Using the CDF Editor
	Loading the Modified CDF File

	Modifying the Component Netlisting Function(s)

	Chapter 4: Creating Model Files
	Creating a Simple ADS Model File
	Creating a Parametric Subnetwork Model File
	Defining Instance Parameters using Expressions
	Defining Model Parameters using Expressions

	Appendix A: References
	Appendix B: Adding CDF/SimInfo to a Component Library
	Using cdfDumpAll
	Dumping the CDF for an Entire Component Library
	Dumping the CDF for Individual Components

	Using the Edit Component CDF Form

	Appendix C: Modifying the basic Library
	Appendix D: Modifying the analogLib Library
	Using almBuildLibrary in a UNIX Shell Script

	Appendix E: ADS Simulator Input Syntax
	Operating System Requirements
	Setting Environment Variables
	Platform-Specific Variables

	Using the hpeesofsim Command
	Codewording and Security
	General Syntax
	The ADS Simulator Syntax
	Field Separators
	Continuation Characters
	Name Fields
	Parameter Fields
	Node Names
	Lower/Upper Case
	Units and Scale Factors
	Booleans
	Ground Nodes
	Global Nodes
	Comments
	Statement Order
	Naming Conventions
	Currents

	Instance Statements
	Model Statements
	Subcircuit Definitions
	Expression Capability
	Constants
	Variables
	Expressions
	Functions
	Conditional Expressions

	VarEqn Data Types
	Type conversion

	‘‘C-Preprocessor’’
	File Inclusion
	Library Inclusion
	Macro Definitions
	Conditional Inclusion

	Data Access Component
	Reserved Words

	Index

